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Fig. 1. Concept of our method. We envision that design software equips a “Crowdsource” button for running the crowd-powered search for the slider
values that provides perceptually “best” design. To enable this, we present a novel extension of Bayesian optimization, where the system decomposes the
n-dimensional optimization problem into a sequence of one-dimensional line search queries that can be solved by crowdsourced human processors.

Parameter tweaking is a common task in various design scenarios. For exam-
ple, in color enhancement of photographs, designers tweak multiple parame-
ters such as “brightness” and “contrast” to obtain the best visual impression.
Adjusting one parameter is easy; however, if there are multiple correlated
parameters, the task becomes much more complex, requiring many trials
and a large cognitive load. To address this problem, we present a novel ex-
tension of Bayesian optimization techniques, where the system decomposes
the entire parameter tweaking task into a sequence of one-dimensional
line search queries that are easy for human to perform by manipulating a
single slider. In addition, we present a novel concept called crowd-powered
visual design optimizer, which queries crowd workers, and provide a working
implementation of this concept. Our single-slider manipulation microtask
design for crowdsourcing accelerates the convergence of the optimization
relative to existing comparison-based microtask designs. We applied our
framework to two different design domains: photo color enhancement and
material BRDF design, and thereby showed its applicability to various design
domains.
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1 INTRODUCTION
Parameter tweaking is a common task in various design scenarios.
For example, in color enhancement of photographs, designers care-
fully tweak multiple parameters such as “brightness” and “contrast”
to obtain the most visually pleasing results. Similarly, game author-
ing, presentation slide design, procedural modeling, 3D rendering,
etc. involve parameter tweaking. However, manual parameter tweak-
ing is tedious and difficult because the user needs to explore a large
high-dimensional search space by directly controlling many low-
level parameters. The relation between individual parameters and
the result is often unknown, so the user needs to proceed by trial
and error (i.e., move a slider, see the result, and move the slider
back). In this process, the user needs to remember the effect of each
parameter during the search, which imposes a significant mental
workload. This exploration is combinatorial, making the task even
more difficult.
A possible approach is to show multiple candidates and let the

user select the best one (e.g., [Marks et al. 1997]); however, it is diffi-
cult to cover a high-dimensional search space with a limited number
of instances, and the task would still not be easy if the number of
candidates is large. Brochu et al. [2007] proposed an alternative,
where a search task is converted into a sequence of simple pairwise
comparison tasks. The user only needs to compare two images pre-
sented by the system and answer which is better. The user needs to
repeat this task multiple times, but this is much easier than dealing
with many sliders at once. The system internally formulates the
problem as a Bayesian optimization and selects candidate images
that can most efficiently lead to the best parameter set. In a sense,
this is a hybrid human-computer cooperative problem solving ap-
proach, where the human performs simple perceptual tasks while
the computer guides the human and integrates the data.
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Pairwise comparison Single-slider manipulation

Choose the image that 
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Fig. 2. Microtask design. (Left) Existing methods use pairwise comparison
microtasks. (Right)We propose to use single-slider manipulationmicrotasks.

A problem with the above method is efficiency. It requires many
iterations (i.e., interactive comparison tasks) to reach an optimum.
This is because very limited information (i.e., the relative order of
two discrete samples) is obtained from a single iteration. Another
limitation is that their implementation is currently limited to a sin-
gle user. The method converts a complicated compound task into a
sequence of simple tasks, so it has a potential to be used in a crowd-
sourcing setting where many workers complete simple microtasks
in parallel. However, this possibility has not been investigated so
far.

1.1 Contributions
To address these problems, we propose two extensions of Brochu
et al.’s method [2007]. First, we propose a Bayesian optimization
framework based on line search oracles instead of pairwise com-
parison oracles; our framework decomposes the entire problem
into a sequence of one-dimensional slider manipulation tasks (Fig-
ure 2). This makes it possible to obtain much richer information in
a single iteration compared with a pairwise comparison of discrete
samples and to reach the optimum much more efficiently. The diffi-
culty of this task is slightly greater, but it is still comparable to the
comparison-based task.
The second extension is to implement an optimization frame-

work using crowdsourced human computation instead of having the
user in the loop, which enables “semi-automatic” execution of the
optimization. (Although crowds interact with the system, the user
experience is automatic.) We present the concept of a crowd-powered
visual design optimizer, and implement within the Bayesian opti-
mization framework based on line search oracles. Once the user
submits a high-dimensional design task to the system, it generates
a sequence of single-slider manipulation microtasks and deploys
them to a crowdsourcing platform. Crowd workers complete the
tasks independently, and the system gradually reaches the optimal
solution. Figure 1 illustrates this concept.
We demonstrate the effectiveness of our crowd-powered opti-

mizer using two different design domains: photo color enhancement
with a 6-dimensional design space, and material appearance design
based on parametric bidirectional reflectance distribution function
(BRDF) models with 3- and 7-dimensional design spaces. We also
show that our slider-based method makes the optimization converge
faster and yields better solutions than comparison-based methods
do, both in a synthetic simulation and in an actual crowdsourcing
setting.

1.2 Assumptions
Design domains. We assume that the target parameters are con-

tinuous, and thus discrete ones (e.g., font type) are out of the scope.
We also assume that the corresponding visual changes continuously
with respect to each parameter. From these assumptions, we con-
sider the goodness function to be a continuous, smooth function. We
expect that the design space is reasonably parameterized by at most
a dozen parameters as in most softwares; the parametrization itself
is out of our scope. It is necessary that even novices can assess the
goodness of the designs (but they do not need to know how it can
be improved). These assumptions are sufficiently general and we
believe that our method is applicable to problems in a wide variety
of purposes such as photo color enhancement, parametric BRDF
design, facial expression modeling using blendshape, 2D graphic
design (e.g., posters), procedural texturing (e.g., Perlin noise), and
post-rendering image effects.

Crowds. We assume that there exists a common preference shared
by the crowd workers. Each crowd worker responds with some
“noise” added to this common preference, and thus, gathering re-
sponses from a sufficient number of them and averaging the re-
sponses should provide a good approximation of the underlying com-
mon preference. We do not handle differences in preference among
crowd workers; for example, we do not consider demographic fac-
tors in preference [Reinecke and Gajos 2014].

2 RELATED WORK

2.1 Bayesian Optimization
Bayesian optimization finds a maximum (or a minimum) of a black-
box function. It is especially effective for optimizing expensive-
to-evaluate functions, because it tries to minimize the number of
iterations, i.e., function evaluations. This technique actively chooses
a sampling point in each iteration on the basis of previous obser-
vations. Researchers have used this technique, for example, for
optimizing hyperparameters in machine learning models such as
convolutional neural networks [Snoek et al. 2012]. We recommend
that readers refer to the comprehensive introductions [Brochu et al.
2010b; Shahriari et al. 2016] for details.
Because human evaluation is considerably expensive compared

to machine evaluation, Bayesian optimization can be a reasonable
choice for human-in-the-loop settings. Brochu et al. [2007] applied
Bayesian optimization techniques to material BRDF design, which
requires human evaluation. They used an isotropic monotone BRDF
model, yielding a 3-dimensional design space. We also demonstrate
the applicability of our method in material BRDF design scenar-
ios with 3-dimensional (monotone) and 7-dimensional (full-color)
design spaces. Later, Brochu et al. [2010a] applied Bayesian opti-
mization techniques to 4- and 12-dimensional design spaces of fluid
animations. To handle such high-dimensional spaces, they incorpo-
rated domain-specific data as a prior knowledge.

2.2 Crowdsourced Human Computation
Von Ahn [2005] described the concept of human computation in his
Ph.D. thesis as “a paradigm for utilizing human processing power to
solve problems that computers cannot yet solve”. For comprehensive
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discussions on the definition of human computation, see the survey
by Quinn and Bederson [2011]. Human processors are often em-
ployed on demand through microtask-based crowdsourcing services,
such as Amazon Mechanical Turk1 and CrowdFlower2. Little et al.
[2010] described the concept of human computation algorithms, in
which crowdsourced human processors are incorporated into al-
gorithms in the form of function calls. In the computer graphics
community, Gingold et al. [2012] devised human computation algo-
rithms to solve perceptual computer vision problems. Koyama et al.
[2014] presented a human computation algorithm for constructing
preference models for target design spaces. In this paper, we present
a human computation algorithm for design optimization.

Althoughwe believe that we are the first to “explicitly” present the
concept of a crowd-powered visual design optimizer, several related
attempts have been conducted. Bernstein et al. [2011] presented
a human computation algorithm called rapid refinement, which is
used to identify the best frame in a 10-second video. The search
space is limited to the video’s seekbar. Laursen et al. [2016] pre-
sented an algorithm to select the best icon set for a GUI design from
many icon candidates. They used crowdsourced human computa-
tion for gathering perceptual data about candidate icons, but the
optimization process itself is a simple exhaustive search and does
not involve human computation. Another notable related area is in-
teractive evolutionary computation (IEC) for visual design [Clune and
Lipson 2011; Sims 1991], in which human evaluation is incorporated
into the loop of evolutionary computation, and some studies used
crowdsourcing to involve such human input (e.g., [Yu and Nickerson
2011]). Besides the underlying mathematics, these methods and our
own differ in several respects. First, most IEC methods are used to
explore creative designs, whereas our method is used to determine
in an efficient manner a single optimal design from a design space.
Second, as our target problem is a continuous optimization, we can
utilize continuous line search tasks rather than typical selection or
rating tasks used in IEC.

2.3 Microtask Design for Crowdsourcing
To stably obtain data from crowdsourcing, it is important to design
the tasks to be micro, i.e., able to be completed in a few minutes, and
easy, i.e., able to be conducted by unskilled crowds. One of the most
popular microtask designs is pairwise comparison: showing two
options and asking the crowdworker to select one according to some
criteria [Chaudhuri et al. 2013; Garces et al. 2014; O’Donovan et al.
2014; Secord et al. 2011; Zhu et al. 2014]. This is also called 2-forced
alternative comparison (2FAC). Showing more than two options is a
straightforward extension of 2FAC, and probabilistic models for this
type of comparison data are available [Tsukida and Gupta 2011]. In
section 7, we compare these comparison-based methods with our
slider-based method and show that ours is more effective for solving
optimization problems.
Another popular microtask design is to gather n-point Likert-

type scale (e.g., n = 5) data for a single stimulus (e.g., [O’Donovan
et al. 2011; Serrano et al. 2016; Streuber et al. 2016]). However, we
consider that this is not suitable in our problem setting of solving

1https://www.mturk.com/
2https://www.crowdflower.com/

optimization problems; around the optimum, the crowds’ responses
would always be the highest option, which is not informative for
finding the optimum. More importantly, unless crowd workers are
familiar with the entire design space, ratings are unlikely to be
consistent. Gathering n-point Likert-type scale data for pairwise
stimuli comparisons (e.g., [Koyama et al. 2014; Yumer et al. 2015]) is
also a possiblemicrotask design; however, probabilisticallymodeling
this data for Bayesian optimization is not trivial. Wilber et al. [2014]
proposed a microtask design of selecting k options from n options
(k < n) for the purpose of similarity-driven embedding. In summary,
while most of the existing microtask designs involve only discrete
samples, our slider-based microtask design involves continuous
searches, which provide richer information.

2.4 Computational Perceptual Models
Crowdsourcing enables large-scale perceptual user studies. By using
this approach, researchers have gathered large amounts of percep-
tual data and trained computational perceptual models for quantify-
ing aesthetic assessment [O’Donovan et al. 2011; Secord et al. 2011;
Zhu et al. 2014], semantics [Chaudhuri et al. 2013; O’Donovan et al.
2014; Serrano et al. 2016; Streuber et al. 2016; Yumer et al. 2015],
and distance metrics [Garces et al. 2014; Liu et al. 2015; Lun et al.
2015; O’Donovan et al. 2014]. (Among them, the method of Zhu
et al. [2014] may be the most related to ours in that theirs actively
samples for efficient learning.) Basically, they investigated how to
solve regression problems for each specific domain. To the best of
our knowledge, none of the above studies tries to directly solve op-
timization problems; our Bayesian optimization framework enables
active sampling of a design space for efficiently and directly finding
an optimum of an unknown perceptual function. Also, we aim at
developing an on-demand general solver rather than pre-trained
specific models.

3 FUNDAMENTALS OF BAYESIAN OPTIMIZATION
This section briefly introduces the standard Bayesian optimization
techniques, upon which our framework is built. We also provide
a supplemental document for describing more detailed equations
and our implementation. Readers can find more comprehensive
introductions in [Brochu et al. 2010b; Shahriari et al. 2016].

Goal. Suppose that A is a d-dimensional bounded space, f :
A → R is an unknown black-box function, and we want to find its
maximum:

x∗ = argmax
x∈A

f (x). (1)

Suppose as well that the function value f (x) can be computed for an
arbitrary point x, but f (·) is an expensive-to-evaluate function, i.e., it
entails a significant computational cost to evaluate the function
value. Thus, while there are many optimization algorithms that can
be used here, we are especially interested in making the number of
necessary function evaluations as small as possible.

Strategy. Suppose that we currently have a set of t observations:

Dt = {(xi , fi )}ti=1, (2)

where fi = f (xi ). Intuitively, for each iteration of Bayesian opti-
mization, the next evaluation point xt+1 is determined such that
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it is “the one most worth observing” based on the previous data
Dt . Suppose that a : A → R is a function that quantifies the “wor-
thiness” of the next sampling candidate. We call this function an
acquisition function. For each iteration, the system maximizes the
acquisition function to determine the most effective next sampling
point:

xt+1 = argmax
x∈A

a(x;Dt ). (3)

Acquisition function. We want to choose the next sampling point
so that it is likely to have a larger value (because we want to find the
maximum) and at the same time its evaluation is more informative
(e.g., visiting points that are very close to already visited points is
less useful). The expected improvement (EI) criterion is often used
to ensure such properties [Brochu et al. 2010a, 2007; Snoek et al.
2012]. Let f + be the maximum value among the observed data D.
The acquisition function based on EI is defined as

aEI (x;D) = E[max{ f (x) − f +, 0}], (4)

where E[X ] means the expectation value of X , and here f (·) is
considered as a probabilistic variable that depends on the data D.

Gaussian process prior. It is possible to calculate the expectation
in Equation 4 in closed form by assuming a Gaussian process (GP)
prior on f (·). Under this assumption, any finite set of function value
observations follows a multivariate Gaussian distribution. Let θ
be the hyperparameters of this multivariate Gaussian distribution.
The GP prior enables an unobserved function value f (x∗) at an
arbitrary point x∗ to be predicted on the basis of the dataD and the
hyperparametersθ . It can be analytically proven that the unobserved
function value follows a simple Gaussian distribution:

f (x∗) ∼ N (µ (x∗),σ 2 (x∗)), (5)

where µ (·) is a predicted mean function and σ 2 (·) is a predicted
variance function, both of which can be expressed in closed form.

Hyperparameters. To calculate the predictive distribution of the
function value (i.e., µ (·) and σ (·)), and consequently the acquisition
function aEI (·), we need to determine the model hyperparameters
θ . For this, we use maximum a posteriori (MAP) estimation. Given
observed data D, the model hyperparameters are determined by
maximizing the posteriori distribution of θ :

θMAP = argmax
θ

p (θ | D). (6)

Example optimization sequence. Figure 3 shows an example se-
quence of Bayesian optimization with a one-dimensional test func-
tion. See the supplementary document for more examples. Note
that we do not intend that µ (·) converges to f (·), since this is not a
regression but an optimization; instead, x+ is expected to converge
to the unknown maximum.

4 BAYESIAN OPTIMIZATION BASED ON LINE SEARCH
ORACLE

We consider a parameter tweaking process to be a mathematical
optimization problem wherein the perceptual (e.g., aesthetic) prefer-
ence is the objective function to be maximized. Given n parameters

to tweak, we solve

x∗ = argmax
x∈X

д(x), (7)

where д : X → R is the goodness function, X = [0, 1]n is the target
design space, and x∗ is the optimal parameter set that maximizes
the aesthetic preference of the target visual design. As д(·) is an
unknown black-box function existing in the human brain, we need
to take a human-in-the-loop approach.
The standard Bayesian optimization in the previous section re-

quires that function values can be observed for any argument. In
other words, it is based on a function-value oracle. However, in our
problem setting, it is not realistic to use a function-value oracle
for the perceptual goodness function д(·). For example, suppose
that you are asked to provide a real-valued goodness score for a
certain visual design; this task would be rather difficult without
knowing all possible design alternatives. For this reason, Brochu
et al. [2007] extended Bayesian optimization so that it could use a
function-value-comparison oracle instead of a function-value oracle;
their form of optimization iteratively queries a (human) processor
about which design is better in pairwise comparison of two designs.
In this section, we describe a novel extension of Bayesian opti-

mization based on a line search oracle instead of function-value or
function-value-comparison oracles. The line search oracle is pro-
vided by a single-slider manipulation query; human processors are
asked to adjust a single slider for exploring the design alternatives
mapped to the slider and to return the slider value that provides
the best design configuration. Mathematically speaking, given a
one-dimensional subspace of the entire search space, this oracle
provides a solution of a maximization problem within this subspace.

4.1 Slider Space
We let human processors adjust a slider, i.e., find a maximum in
a one-dimensional continuous space. We call this space the slider
space. Technically, this space is not necessarily linear with respect
to the target design space X (i.e., forming a straight line segment in
X); however, in this study, we will consider only the case of straight
line for simplicity and for the sake of not confusing the human
processors.

At the beginning of the optimization process, the algorithm does
not have any data about the target design space X or the goodness
function д(·). Thus, for the initial slider space, we simply choose
two random points in X and connect them by a line segment.
For each iteration, we want to arrange the next slider space so

that it is as “meaningful” as possible for finding x∗. We propose
to construct the slider space S such that one end is at the current-
best position x+ and the other one is at the best-expected-improving
position xEI. Suppose that we have observed t responses so far, and
we are going to query the next oracle. The slider space for the next
iteration, i.e., St+1, is constructed by connecting

x+t = argmax
x∈{xi }

Nt
i=1

µt (x), (8)

xEIt = argmax
x∈X

aEIt (x), (9)
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Uncertainty

Fig. 3. An example sequence of Bayesian optimization, applied to a one-dimensional test function. The iteration proceeds from left to right. The
gray dotted line indicates the unknown black-box function f ( ·), the red line indicates the predicted mean function µ ( ·), the blue line indicates the acquisition
function a ( ·), the pink region indicates the uncertainty, i.e., 95% confidence interval, and the dots indicate the observed data (the red one is the maximum at
each moment). Note that a ( ·) is scaled for visualization purpose.

where {xi }Nt
i=1 is the set of observed data points, and µt (·) and a

EI
t (·)

are the predicted mean function and the acquisition function calcu-
lated from the current data. The calculation of µ (·) and aEI (·) is less
trivial than in the case of standard Bayesian optimization; we will
detail it in the following subsections.
Optionally, we can enlarge the line segment with a fixed scale,

e.g., 1.25. This is for avoiding cognitive biases; human processors
might feel uncomfortable choosing the ends of the slider. Another
reason is that the neighborhoods of x+ and xEI are each likely to be
good and worth exploring. Moreover, to avoid meaningless slider
tweaking, we ensure that the length is not less than 0.25.

4.2 Likelihood of Single-Slider Manipulation Responses
Bradley-Terry-Luce model. In crowdsourced perceptual user stud-

ies, pairwise comparison tasks are frequently used. To model pair-
wise comparison responses from a probabilistic viewpoint, many re-
cent studies (e.g., [O’Donovan et al. 2014; Zhu et al. 2014]) have used
the Bradley-Terry (BT)model [Bradley and Terry 1952]. For handling
cases in which more than two options are involved, the Bradley-
Terry-Luce (BTL) model, which is an extension of the BT model, can
be used (see [Tsukida and Gupta 2011]). Suppose that there arem
design options corresponding to parameter sets P = {xi }mi=1, and
the design corresponding to xj is chosen out of them options. We
describe this situation as

xj ≻ P \ {xj }. (10)

The BTL model describes the likelihood of this situation as

p (xj ≻ P \ {xj } | {дi }mi=1) =
exp(дj/s )∑m
i=1 exp(дi/s )

, (11)

where дi denotes the goodness value on xi , and s is a scaling factor
that affects the likelihood; when s is smaller, the likelihood is more
sensitive to the goodness function values, and when s is larger, the
likelihood becomes closer to 1/m and less sensitive to the goodness
function values. At present, we consider a fixed value of s = 0.01
(but later we will explain how we set this value adaptively in the
crowdsourcing setting).

Modeling slider responses. Tomodel the likelihoods of single-slider
manipulation responses, we propose to use the BTLmodel as follows.
Let xchosen be the parameter set that a human processor chooses
from the slider space S constructed from x+ and xEI. Also let S′
be a discretized form of S consisting of a finite number of points

including xchosen. We describe this situation as

xchosen ≻ S′ \ {xchosen}, (12)

and then apply the BTL model by considering that xchosen is chosen
out of the finite number of options. In our current implementation,
we define S′ = {xchosen, x+, xEI}. We tested several definitions of
S′ that included more sampling points, but we did not observe
any significant improvement in the optimization behavior; thus, we
chose the minimal representation.

4.3 Data Representation
Suppose that we have observed t single-slider manipulation re-
sponses so far. We represent this data as

Dt = {xchoseni ≻ {x+i−1, x
EI
i−1}}

t
i=1, (13)

where each xchoseni , x+i−1, and x
EI
i−1 corresponds to a certain element

in a set of Nt observed data points {xi }Nt
i=1. Note that, when a new

single-slider manipulation response is added, we merge the same
or very close points so that the set {xi }Nt

i=1 does not contain any
duplicate points.

4.4 Inference from Single-Slider Manipulation Data
Let дi be the goodness function value at the data point xi (i.e., дi =
д(xi )) and g be an N -dimensional vector that concatenates the
goodness values at all the observed data points:

g =
[
д1 · · · дN

]T
. (14)

Unlike standard Bayesian optimization, in our case, the function
values g are latent; they are not explicitly observed, but rather
implicitly inferred from the single-slider manipulation responses
D. As the goodness values g and the model hyperparameters θ are
correlated, we infer g and θ jointly by using MAP estimation:

(gMAP,θMAP) = argmax
(g,θ )

p (g,θ | D)

= argmax
(g,θ )

p (D | g,θ )p (g | θ )p (θ ). (15)

Since D and θ are conditionally independent given g, we have

p (D | g,θ ) = p (D | g). (16)

The conditional probability p (D | g) is calculated using the BTL
model:

p (D | g) =
∏
i
p (xchoseni ≻ {x+i−1, x

EI
i−1} | g). (17)
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Algorithm 1 Bayesian optimization based on line search oracle.

1: for t = 1, 2, . . . do
2: (gMAP

t ,θMAP
t ) = compute_MAP_estimate(Dt )

3: x+t = argmaxx∈{xi } µt (x)
4: xEIt = argmaxx∈X aEIt (x)
5: St+1 = construct_slider_space(x+t , x

EI
t )

6: xchosent+1 = query_line_search(St+1)

7: Dt+1 = Dt ∪ {xchosent+1 ≻ {x+t , x
EI
t }}

8: end for

The conditional probability p (g | θ ) is calculated from the definition
of the GP prior:

p (g | θ ) = N (g; 0,K), (18)

whereK is the covariance matrix of this GP, which depends onθ (see
the supplemental document). For p (θ ), we assume a log-normal dis-
tribution for each hyperparameter (see the supplemental document).
As the derivatives can be analytically derived, this MAP estima-
tion can be efficiently performed by gradient-based optimization
algorithms such as L-BFGS [Liu and Nocedal 1989].
Once gMAP and θMAP have been obtained, we can compute the

predictive distribution of the goodness function values for an arbi-
trary argument, i.e., µ (·) and σ (·), in the same way as in the previous
section. Consequently, we can compute the acquisition function
aEI (·).

4.5 Example Optimization Sequence
Algorithm 1 summarizes the procedure of our Bayesian optimiza-
tion framework. In line 6, the system queries a human. Figure 4
illustrates an example optimization sequence in which the frame-
work is applied to a two-dimensional test function and the oracles
are synthesized by a machine processor. The process begins with
a random slider space. After several iterations, it reaches a good
solution. See the supplemental document and video for more de-
tailed illustrations. Again, as this is not regression, the predicted
mean function µ (·) does not converge to the goodness function д(·),
which is the key that enables it to find maximums efficiently.

5 CROWD-POWERED VISUAL DESIGN OPTIMIZER
We define a crowd-powered visual design optimizer as a system that
finds an optimal design which maximizes some perceptual function
from a given design space and, to enable this, bases its optimization
algorithm upon the use of crowdsourced human computation. In
this section, we describe the implementation of our crowd-powered
visual design optimizer based on the framework described in the
previous section.

User experience. We consider a scenario in which a user pushes
a “Crowdsource” button in design software for running the crowd-
powered optimization process, and then he or she obtains results
without any further interaction, as shown in Figure 1. For the user,
this seems to be a fully automatic process; indeed, he or she does
not need to know that many crowd workers are involved in the
computation. Currently, the entire computation takes a few hours

(N/A)

(N/A)

(N/A)

Fig. 4. An example sequence of the Bayesian optimization based on
line search oracle, applied to a two-dimensional test function. The
iteration proceeds from left to right. From top to bottom, each row visualizes
the black-box function д ( ·) along with the next slider space S and the cho-
sen parameter set xchosen, the predicted mean function µ ( ·), the predicted
standard deviation σ ( ·), and the acquisition function a ( ·), respectively. The
red dots denote the best parameter sets x+ among the observed data points
at each step.

in our proof-of-concept implementation, and minimization of this
latency is out of our scope. Incorporating real-time crowdsourcing
techniques [Bernstein et al. 2011] could be used to reduce the latency.

Implementation details. We implemented a microtask platform
that crowd workers access through standard web browsers. Instead
of generating visual images in real time on web browsers, our plat-
form pre-renders a finite number of images on the server by using
uniformly sampled parameter sets along with the slider space. These
images are loaded by the crowd workers’ web browsers only once
when the page is loaded; then the shown image is dynamically
updated through slider manipulation in real time. Note that this
strategy makes our framework applicable for domains that entail
high computational costs for rendering images. To reduce cognitive
bias, we set the initial slider tick positions randomly.

Task deployment. We used CrowdFlower as the microtask-based
crowdsourcing platform. Other platforms, including Amazon Me-
chanical Turk, can also be used. We paid 0.05 USD for each task.

Gathering multiple responses. Each crowd worker may respond
with some “noise”, so averaging the responses from a sufficient
number of crowd workers should provide a good approximation of
the underlying common preference. To take this into account, we
modify the line search query in line 6 in Algorithm 1 as follows. In
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each iteration, the system gathers responses fromm crowd workers
by using the same slider space (e.g., m = 5). After gathering the
necessary number of responses, the system calculates the median of
the provided slider tick positions and uses it for calculating xchosen.
In the actual implementation, we deploy several additional tasks so
that there would be no long waits for unrealistically slow workers
(e.g., over 30 minutes).

Quality control. Crowd workers might cheat or misunderstand
their tasks and thus make poor-quality responses. To detect such
low-quality responses, we use a simple quality control approach:
we duplicate each task and let each worker do the same task twice,
but the slider ends are reversed the second time. If a crowd worker
submits contradictory values, i.e., the distance between the slider
tick positions is over 25% of the slider length, we consider that he
or she is an outlier and ignore the data.

Taking variance in responses into consideration. If there is a per-
ceptually clear maximum in the slider space, crowd workers tend
to make similar responses; on the other hand, if there is no clear
maximum, crowd workers tend to provide high-variance responses.
In the latter case, the data likelihoods should be less influential in the
MAP estimation. To make our MAP estimation variance-adaptive,
we modify the scale factor s in Equation 11 as s = a exp(bσ 2),where
a and b are fixed parameters for controlling the behavior (we used
a = 0.01 and b = 50.0), and σ 2 is the variance of the chosen slider
positions, where the width of the slider is taken to be 1.0. When the
variance is zero (i.e., all crowd workers provide the same responses),
this becomes identical to the unmodified formulation. When the
variance is higher, s becomes larger, which means the likelihood
calculated by Equation 11 becomes less influential in the MAP es-
timation. In all the following experiments, we use this modified
parameter.

6 EXAMPLE SCENARIOS AND RESULTS
We tested our framework in two typical parameter tweaking scenar-
ios: photo color enhancement and material BRDF design. In both
cases, domain-specific approaches are possibly more effective; how-
ever, we emphasize that our framework does not rely on any domain
knowledge (the application domains are not limited to these two)
and thus it can be applied to a wide range of scenarios. In addition,
ours can be combined with domain-specific approaches to build
more practical specific systems (we leave this for future work).

Costs. All results shown in this section were generated with 15
iterations. For each iteration, our system deployed 7 microtasks,
and it proceeded to the next iteration once it had obtained at least
5 responses. We paid 0.05 USD for each microtask execution, so
that the total payment to the crowds was 5.25 USD for each result.
Typically, we obtained a result in a few hours (e.g., the examples in
Figure 5 took about 68 minutes on average).

6.1 Photo Color Enhancement
Photo color enhancement requires adjusting multiple parameters
while considering the image contents [Bychkovsky et al. 2011;
Koyama et al. 2016]. In this work, we chose the following six param-
eters for the target design space: brightness, contrast, saturation,

and color balance with respect to red, green, and blue, following an
existing (publicly available) implementation [Koyama et al. 2016].
Note that our framework can also handle tonal curves by parame-
terizing them (e.g., [HaCohen et al. 2011]), though we did not use
them in this example. In the microtasks, we instructed the crowd
workers simply to adjust the slider until the image looked the best.

We compared our optimization with auto-enhancement functions
in commercial software packages. Although such enhancement func-
tions heavily utilize domain knowledge, they still may not be suffi-
ciently robust to handle certain classes of photographs (e.g., ones
that require semantic interpretation). We compared the results of
our enhancement (with 15 iterations) with Adobe Photoshop CC3

(applying “Auto Tone” and then “Auto Color”) and Adobe Photoshop
Lightroom CC4 (setting both “WB” (white balance) and “Tone” to
“Auto”). Figure 5 shows the results. To quantify the degree of success
of each enhancement is, we conducted a crowdsourced study in
which we asked crowd workers to identify which image looks best
among the three enhancement results and the original image. For
quality control, we duplicated each questionnaire and discarded
answers from participants who provided inconsistent answers. The
numbers in Figure 5 represent the results. The photos enhanced by
our crowd-powered optimization were preferred over the others
in these cases. Note that we do not claim that our method is “bet-
ter” than the other software; instead, these results simply indicate
that our method can successfully produce a “people’s choice”. This
represents one of the advantages of our method.

Next, to see the robustness of our framework with respect to vary-
ing the initial randomized seeds, we repeated the same optimization
procedure three times (Trial A, B, and C). Figure 6 (Top) shows
the sequences of enhanced photographs over the iterations. We
measured the differences between the trials by using two metrics:
a parameter space metric and a perceptual color metric. The former
is based on the l2-norm in the space X between the corresponding
parameter sets. The latter is based on the perceptual color distance
metric called CIEDE2000 [Sharma et al. 2005]; we measured the
perceptual distance for each pixel in the enhanced photographs and
calculated the mean over all the pixels. Figure 6 (Bottom) shows
the results. It shows that the distances become small rapidly in the
first 4 or 5 iterations, and they approach similar enhancement even
though the initial conditions are quite different.

6.2 Material BRDF Design
Material BRDF design is such a complex and unintuitive task even
for experts that special supports are necessary [McAuley et al. 2012;
Ngan et al. 2006; Serrano et al. 2016]. Here, we use “Standard Shader”
provided in Unity 55 as the target design space. This shader pro-
vides physically based shading and can be used to express various
BRDFs such as plastic, metal, and fabric. In this shader, BRDF is
parametrized by albedo lightness, specular lightness, and smooth-
ness. The number of free parameters is three in monotone and seven
in full color. When rendering images, we set an HDR skybox and
reflective probes to this scene so that the material appearance would
be effectively expressed.
3http://www.adobe.com/products/photoshop.html
4http://www.adobe.com/products/photoshop-lightroom.html
5https://unity3d.com/5
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Original Ours Photoshop Lightroom

1 23 3 6

0 31 0 2

0 29 3

0 32 0 1

2 26 2 3

0 29 1 3

1

Fig. 5. Comparison of photo color enhancement between our crowd-
powered optimization and auto-enhancement in commercial soft-
ware packages (Photoshop and Lightroom). The number on each photo-
graph indicates the number of participants who preferred the photograph to
the other three in the study. The second and third photographs are provided
by Flickr users: houroumono and Kathleen Conklin.

Our framework enables automatic adjustment of BRDF parame-
ters if a user has a reference photograph; it can be used to minimize
the perceptual distance between the appearance in the photograph
and the produced appearance by the shader. In the microtasks, we
showed both the reference photograph and a rendered image with a
slider side by side and asked the crowd workers to adjust the slider
until their appearances were as similar as possible. Figure 7 shows
the results for both monotone and full color spaces. In a sense, this
can be considered to be BRDF acquisition from a casual photograph.
This is analogous to the concept of crowdshaping [Streuber et al.
2016], while it requires comprehensive perceptual user studies to be
done in advance for constructing a model between human shapes
and attributes.
Another usage of our framework is that the user can specify

textual instructions instead of reference photographs. Figure 8 illus-
trates the results of this usage, where we instructed crowd workers
to adjust the slider so that it looks like “brushed stainless”, “dark blue
plastic”, etc. This is not easy when a human-in-the-loop approach is
not taken.
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Fig. 6. Comparison of three optimization trials with different initial
conditions in photo color enhancement. (Top) Transitions of the en-
hanced images. (Bottom) Transitions of the differences between each trial,
measured by the parameter space metric and the perceptual color metric.

7 EVALUATION
In section 6, we showed that our method can produce practical-
quality results in two different design domains. The remaining
questions to be answered here are: Q1: Does the use of single-slider
manipulation (SSM) oracle improve optimization performance? Q2:
How much does the task burden increase as a result of using SSM? To
answer them, we consider the following two baseline conditions.
The first is the 2-gallery comparison (2GC) oracle as used by Brochu
et al. [2007], where a human processor is asked to choose one option
from two given options. The two options are sampled at x+ and
xEI. The second condition is called a 4-gallery comparison (4GC)
oracle, where four (instead of two) options are presented and one
option is selected from them. Following [Brochu et al. 2010a], the
four options are sampled using Schonlau et al.’s method [1998],
which is also based on expected improvement and can be seen as a
simple extension of 2GC. We modeled the data likelihood in 2GC
and 4GC by using the BT and BTL models, respectively. First, we
compared our SSM approach with 2GC and 4GC using synthetic set-
tings (Exp1), where we simulated responses from crowds by using
a known test function. Then we compared the three approaches in a
crowdsourcing setting (Exp2). In both Exp1 and Exp2, we evaluated
the number of iterations required to get good solutions, to answer
Q1. In Exp2, we also evaluated the microtask burden on the crowds,
to answer Q2.

7.1 Experiment 1: Synthetic Setting
As a test function to be optimized, we used an n-dimensional func-
tion: д(x) = exp{−(x − µ)2/2σ 2}, where we set µ = [ 0.5 · · · 0.5 ]T
and σ = 0.5. This function has its maximum at µ. We synthesized or-
acles from this function and tested n ∈ {2, 6, 20}. For each iteration,
we recorded the residuals: r = ∥x+ − µ∥. Figure 9 shows the results.
In general, the residuals drop faster at the beginning and converge
to smaller values at the end in SSM than in 2GC and 4GC. The
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Fig. 7. Results of the crowdsourced BRDF design with reference photographs. In each pair, the top image shows the reference photograph and the
bottom image shows the resulting BRDF after 15 iterations. The design spaces are 3-dimensional in the left four and 7-dimensional in the right two. Some
photographs are provided by Flickr users: Russell Trow, Alexandr Solo, Angie Stalker, Gwen, and lastcun.

“Mirror-like reflective” “Dark blue plastic” “Gold”

Fig. 8. Results of the crowdsourced BRDF design with textual in-
structions. The design spaces are 3-dimensional in the left one and 7-
dimensional in the right two.

gallery comparison approaches often provide “flat” graphs where
the residual does not decrease for several iterations. The reason
for this may be that, especially at the beginning of the iteration,
the algorithm is likely to sample the “boundary” of X because the
uncertainty is very large around the boundary. On the other hand,
this “boundary-exploration” stage is not a critical problem in the
SSM approach, because the slider space lies across the design space
even when the one end is on the boundary.

7.2 Experiment 2: Crowdsourcing Setting
To quantify the optimization performance in crowdsourcing set-
tings, we used photo color enhancement with a reference image.
We manually chose a reference parameter set xref and generated a
corresponding image as the ground truth (i.e., a reference image) in
advance. In the SSM setting, crowd workers were shown a reference
image and an editable image with a slider, and asked to adjust the
slider so that the edited image would be as similar to the reference
image as possible. In the 2GC and 4GC settings, the crowd workers
were shown a reference image and options and asked to find the
most similar option. As the quality control in the 2GC and 4GC
settings, we duplicated each comparison task while showing the
options in opposite order and omitted workers whose responses
were contradictory. Figure 10 shows the change in the error as mea-
sured by the perceptual color metric over the iterations. We can
see that the SSM approach performs better than the 2GC and 4GC
approaches do. The trends are mostly consistent with the results of
the synthetic settings (Figure 9). Figure 11 visualizes sequences of
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Fig. 9. Results of the synthetic experiment. We compare the residuals
(vertical axis; lower is better) over iterations (horizontal axis) among the
single-slider manipulation (SSM), the 2-gallery comparison (2GC), and the
4-gallery comparison (4GC) settings. We repeated the same procedure 20
times for each condition.

the images enhanced by the predicted best parameter set x+ at each
step.

Microtask burden. A possible drawback of the single-slider ma-
nipulation task is that it can be more tedious than a comparison task.
To respond to this concern, we compared SSM, 2GC, and 4GC in
terms of the task-completion time. For each microtask executed by a
crowd worker, we measured the elapsed time from the moment that
the HTML documents in the task page were loaded to the moment
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Fig. 10. Results of the crowdsourcing experiment. We compare the
residuals (vertical axis; lower is better) over iterations (horizontal axis) among
the single-slider manipulation (SSM), 2-gallery comparison (2GC), and 4-
gallery comparison (4GC) settings. We repeated the same procedure 3 times
for each condition.

that the submission button was pushed. The task-completion time
included the time for reading the task instructions and the time
for conducting duplicate tasks for quality control. Figure 12 shows
the results using box plots (the maximum values are not shown for
space reasons). It indicates that the SSM microtask requires more
time than the other microtasks, but its time is still comparable (less
than twice). Considering that the convergence of the SSM approach
is much (at least more than two times) faster than those of the oth-
ers, we argue that our SSM approach is preferable even though the
task burden is moderately heavier. Note that this increase of task-
completion time does not badly affect the entire latency in practice
because other overhead (e.g., between requests of task deployment
and findings of the tasks by crowds) is dominant.

8 LIMITATIONS AND FUTURE WORK
Our framework is built upon many assumptions, some of which
are difficult to validate quantitatively. For example, we assumed
that there exists a common goodness function shared among crowd
workers. In Figure 6, we observed that even if the initial parameter
sets were different, they eventually converged to similar designs,
indicating that this assumption seems valid in this specific situation.
However, it is difficult to determine whether this assumption is
valid in other situations. For example, there are various color palette
styles; some people might prefer a certain style while others might
prefer another style. In this case, the assumption of a common
goodness function may be invalid.

We have discussed how to reduce the number of queries, but we
have not touched on how the time and monetary costs of crowd-
sourcing can be minimized. To reduce the time cost (i.e., the latency
to obtain the optimization results), our framework could incorporate
real-time crowdsourcing techniques [Bernstein et al. 2011]. Also,
parallelizing (or batching) Bayesian optimization (e.g., [Azimi et al.
2010; Desautels et al. 2014]) may be useful for reducing the entire
latency. Reducing the monetary cost may be more challenging. Cur-
rently, we always employ a fixed number of crowd workers in each

iteration; this number could be adaptively adjusted to each appli-
cation and each step, but we have not investigated strategies for
this. Also, we need to develop a criterion for detecting convergence
and thereby stopping the iteration automatically; this will prevent
unnecessary tasks from being deployed.

Considering the demographic factors of crowd workers [Reinecke
and Gajos 2014] or clustering crowd workers from their responses
[Kajino et al. 2013] may enable interesting usage scenarios; these
ideas would be worth investigating in the future. For example, the
objective of optimization could be customized so that the design is
preferred more by a certain group of people.

Our framework does not rely on domain-specific knowledges; this
enables it to be used in various design domains. However, to build
optimizers for specific design scenarios, it would be more effective to
use domain-specific rules or data. Bayesian optimization is capable
of taking such domain knowledge into account by incorporating
them into the Gaussian process prior (e.g., [Brochu et al. 2010a]).

Investigating the use of the slider-based optimization in a single-
user setting also represents a promising area of research. Unlike
tweaking raw sliders simultaneously, users do not have to learn
and remember the effects of raw parameters; instead, what users
have to care about is the best position of the single slider in each
step. Considering how user-specific adaptation (e.g., [Koyama et al.
2016]) can be incorporated into our framework is also an interesting
topic to explore.

We believe that the single-slider manipulation microtask design
could be effective for regression purposes (e.g., [Koyama et al. 2014])
as well. We also expect that our microtask design would be useful
for generating a new type of data annotation for machine learning
where comparison-based or Likert-scale-based tasks are currently
used.
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