View-Dependent Control of Elastic Rod Simulation for 3D Character Animation

Yuki Koyama*
The University of Tokyo

(a) With our method

(¢) Without our method

Takeo Igarashif
The University of Tokyo

Figure 1: (a) An animation of the camera moving around Bunny. His swinging ears are view-dependently simulated by our method so that
they always have the best configurations according to each view direction. (b) The same scene from a virtual fixed view direction. (c) An

animation of the same scene without our method.

Abstract

This paper presents view-dependent control of elastic rod simula-
tion for 3D character animation. Elastic rod simulation is often used
in character animation to generate motion of passively deforming
body parts such as hair, ear, and whiskers. Our goal is to allow artis-
tic control of the simulation in a view-dependent way, for example
to move a hair strand so that it does not hide the eye regardless of
the view direction. To achieve this goal, the artist defines several
example rest poses of the rod in preparation, each of which is as-
sociated with a particular view direction. In run time, the system
computes the current rest pose by blending the example rest poses
associated with the view directions near the current view direction,
and then pulls the pose to the current rest pose. Technical contri-
bution is in the formulation of example-based rod simulation using
view direction as an input, and an algorithm to suppress undesir-
able increase of momentum caused by dynamically changing rest
poses.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: example-based materials, view-dependent control,
elastic simulation

*e-mail:koyama@is.s.u-tokyo.ac.jp
fe-mail:takeo@acm.org

© Yuki Koyama and Takeo Igarashi, 2013. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The definitive version
will be published in Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA '13), and DOI will be provided after publication.

1 Introduction

3D animations that look like 2D traditional cell animations (e.g. the
movie 009 RE:CYBORG [2012]) have become popular thanks to the
advancement in sophisticated cartoon shading methods. In order to
imitate 2D-like animations using 3D, or to realize the know-how of
2D animations in 3D, it is important to stylize contents according
to view directions; for example, Ramemacher [1999] presented a
method to change object geometry depending on the view direction.
Such view-dependent stylizations or adjustments are quite common
in creating 2D animations.

In this paper, we present a method to control elastic rod simula-
tion in a view-dependent way. Elastic rod simulation is often used
in character animation to generate motion of passively deforming
body parts such as hair, ear, and whiskers. The artist defines the
motion of the active body parts such as arms, legs, and head, and
the motion of these passive body parts are generated by physical
simulation. Fig. 2(a) shows examples of elastic rods used in char-
acter animation. Physical simulation frees the artist from manually
specifying the motion, but at the same time makes artistic control
difficult. Our goal is allow artistic control in such a simulation pro-
cess.

Our method works as follows. The artist first defines several exam-
ple rest poses of the rod, each of which is associated with a particu-
lar view direction. Atrun time, the system computes the current rest
pose by blending the example rest poses associated with the view
directions near the current view direction. The system then runs the
simulation using the computed current rest pose. The overall frame-
work is based on example-based materials [Martin et al. 2011], but
we present multiple extensions to make it work appropriately in our
problem setting. Specifically, we present a formulation of example-
based material for rod simulation and a method to blend example
rest poses using the view direction as an input. We also present an

rest pose

Figure 2: (a) Examples of elastic rods in a 3D character. (b) Ex-
amples of joint chains. (c) Examples of additional user input for
our method. The input consists of an arbitrary number of (here 5)
example poses of joint chains, each of which is associated with a
view direction and an extent (magnitude of its influence, here not

showed).

algorithm to suppress undesirable increase of momentum caused by
dynamically changing rest poses.

1.1 Related Work

View-Dependent Control. View-dependent control is consider-
ably important, especially for creating cartoon-like highly stylized
animations. For this purpose, Rademacher [1999] proposed View-
Dependent Geometry (VDG), which allows a 3D surface mesh to
adapt its shape according to view directions. To achieve this, in
addition to the base surface mesh, users make additional deformed
surface meshes for each key view direction. At run time, they dy-
namically blend the input meshes by weights calculated from view
directions. There are some inspired view-dependent animation sys-
tems such as [Chaudhuri et al. 2004; Chaudhuri et al. 2007]. To
our knowledge, our method is the first one that attempts view-
dependent control for physical simulation.

Example-Based Material. The concept of example-based mate-
rials was first proposed by Martin et al. [2011] based on the elas-
tic simulation by Finite Element Method (FEM). The basic idea is,
given some desired deformed poses as additional input, they define
an example manifold as a non-linear interpolation space of input
poses. This example manifold is considered a pose space of the
desired deformations, and used for calculating the rest pose of the
elastic materials. Koyama et al. [2012] presented an implemen-
tation of example-based materials using shape matching dynam-
ics [Miiller et al. 2005] to achieve real-time simulation.

Extending this concept, Schumacher et al. [2012] introduced the
concept of explicit weight control as an attractive application of
example-based materials. The original Martin et al.’s work pro-
duces passive materials, which means the blending weights are cal-
culated by only the conditions of materials, while the weights in
explicit weight control can be calculated from any other condi-
tions; for example, velocities, joint angles, and so on. Our idea is to
use this explicit weight control concept with the weights calculated
from view directions.

There is a method for generating locomotions of elastic objects
[Coros et al. 2012], which exploits the concept of example-based
materials in the algorithm. Their goal is making elastic objects as
if they were alive. In our case, the targets, such as hair, are usually

not alive. Therefore, we present an algorithm to suppress the effect
that makes the object look alive (section 4).

2 User Input

Our method takes a skinned mesh as input, in which a surface mesh
deforms according to the configuration (pose) of a skeleton. The
skeleton consists of active joints and passive joints in our repre-
sentation. Active joints represent main body parts such as arms and
legs, and passive joints represent secondary body parts such as hairs
and ears. The artist explicitly specifies the motion of active joints
(mainly by key framing), and the system computes the motion of
passive joints via physical simulation. We group a set of connected
passive joints together and call it as a joint chain. We assume that
the base of a joint chain is connected to an active joint, and the end
of the joint chain is not connected any joint. We also do not han-
dle a joint chain with branches or loops. Fig. 2(b) shows examples
of joint chains. In the rest of this paper we will discuss how to
compute the motion of a joint chain.

Our method also takes an arbitrary number of view-dependent ex-
ample poses for each joint chain as input (see Fig. 2(c)). Each ex-
ample pose is associated with a view direction and an extent (mag-
nitude of its influence). Note that each example represents a shape
(vertex positions) of a mesh in the original VDG, while each exam-
ple represents a pose of a joint chain in our method.

Given a pose of a joint chain consisting of a set of IV joints, the
pose P can be represented as:

P = (X,Q), ey
X = (x1,..-,%XN), 2)
Q = (ai,.--,an), (3)

where x; € R® and qi € R* are the position of the ¢-th particle
in Eulerian coordinates and its orientation in quaternion represen-
tation, respectively. Here, the 1st joint is attached to an active joint
(base joint). Note that the positions and the orientations are repre-
sented in an absolute way, not relative to the parent joint. We omit
the scale information for our definition of poses because it is sel-
dom used for posing; however, our method could be extended to
deal with scale information if needed.

The view direction is represented as a unit 3-dimensional vector
d: the direction of the camera as seen from the base joint in its
local coordinate frame. Our definition of the view direction does
not include other camera parameters such as the tilt, pan, roll, angle
of view, and the distance between the camera and the model.

Convention. we denote P/ = (Xj, Qj), d’, and M as the j-th
example pose, view direction, and the number of example poses,
respectively. When we use j = 0, it means the base input.

3 View-Dependent Rod Simulation

In this section, we explain how to simulate example-based materi-
als in real-time rod simulation controlled in a view-dependent way.
The basic idea is to exploit the concept of explicit weight con-
trol [Schumacher et al. 2012] and calculate the blending weights
similarly to VDG [Rademacher 1999]. We make non-trivial exten-
sions to these methods to make it work appropriate in our prob-
lem setting. First, we explain how to blend the example poses in
rod simulation. Second, we discuss how to compute the blending
weights from the given view direction.

(b)

1
53

compatible incompatible

Figure 3: (a) 2D and 1D examples of compatible (left) and in-
compatible (right) poses. Incompatible poses cannot be used in
our case. (b) To blend input poses, our method use the rotations
ri,...,rny—1. Here, N = 4.

3.1 Example-Based Rod Simulation

We use Oriented Particles (OP) [Miiller and Chentanez 2011] as
the rod simulation framework. It can simulate elastic solid, shell,
and rod in the same framework in real time. As OP is based on
Position-Based Dynamics (PBD) [Miiller et al. 2007], our method
is also implemented upon PBD. For further information of PBD,
please refer to [Bender et al. 2013]. For ensuring inextensibility of
rods, which is often expected in 3D characters’ elastic parts, we use
distance constraints presented in [Miiller et al. 2007]. The definition
of local regions of OP is arbitrary in our method; if you make the
region larger, the rod becomes stiffer.

Interpolation of example poses is not a trivial problem. Martin
et al. [2011] use non-linear interpolation in their method, because
simple linear interpolation of their deformation descriptor breaks
the compatibility of the deformation, which is undesired in their
method. This non-linearity makes the computation cost expensive.
Schumacher et al. [2012] and Koyama et al. [2012] proposed meth-
ods that allow incompatible interpolated results so that they can
use simple linear interpolation, which makes their methods faster.
Fig. 3(a) shows examples of compatible and incompatible poses,
and please refer to [Schumacher et al. 2012; Koyama et al. 2012]
for details. In our case, we cannot handle incompatible interpolated
results because of the ghost force problem, which is mentioned in
[Miiller and Chentanez 2011]. At the same time, our interpolation
should be linear because of the computational cost, and the interpo-
lated poses should preserve the lengths for ensuring inextensibility.

We therefore use relative rotations as the interpolation space. Using
rotations allows us to interpolate linearly, and we can always recon-
struct a compatible pose from relative rotations by using forward
kinematics. Here we assume that the lengths between neighboring
joints {1, . ..,In—1 are constant.

Specifically, given blending weights w = (wo, . . ., war), the result
of linear blending P (w) can be written as
Pw) = (X(w),Q(w)), @
X(w) = LBx(w;X',...,XM), 5)

Q(W) = LBQ(W; Q17"'7QA4)7 (6)

where LBx means the linear blending of Xs, and LBq means the
linear blending of Qs.

For the algorithm of LBx, we use relative rotations as interpo-
lation space (see Fig. 3(b)). Here we denote x, ;v = x; — Xy
for simplicity. First, for each pose 5 = 0,..., M and each joint

(@ (b)
camera

S

Figure 4: (a) Rademacher’s algorithm for calculating blending
weights from view directions. They use barycentric coordinates of a
triangle as weights. (b) Our algorithm. We use Gaussian functions
on a sphere surface. Note that if the total of the Gaussian weights
is less than 1 (the white area on the sphere), we give the remaining
weight to the base pose.

camera

i=1,..., N —1, the angle and axis of the rotation that makes the
direction of x] ;_, into the direction of x7_, ; can be calculated as
J J J J
J “1 (K1 Xiga) Jo_ Fii—1XFig1,
0 = cos™t SRt ol = —Liol ihLE)

= . R ; .
Hxé,m—lm‘xgﬁ—l,i” ”xz,i—lxxg+1,iu

Then, from the angle and axis, the rotation can be obtained as a
quaternion
. J , J
J J o3
r; fcos?’ + e; sin ?l ®)
x{yo is constant, for example x{lyo = (1,0,0), for any pose j. In
addition, we set r/ directly to (1;0, 0,0) if |#7| < e for stability rea-
sons. Now, our pose descriptor for interpolation can be described

as ‘ _ ,
R =(r],....v%_). 9)

In order to blend these descriptors with w and obtain R(w), we
apply QLERP (the linear interpolations of quaternions) [Kavan and
Zéra 2005] for each joint. After blending, X (w) can be obtained
using forward kinematics from R(w) and l1,...,In—1.

In contrast to LBx, the algorithm of LBq can be simple; Q(w)
can be obtained by simply using QLERP for each joint.

3.2 View-Dependent Control

As with VDG [Rademacher 1999], we determine the blending
weights w by view directions. However, we use a different scheme
for weight computation.

In Rademacher’s algorithm, they consider a triangle mesh that cov-
ers the model, where each vertex corresponds to the input key view
direction. In runtime, the system finds a triangle enclosing the given
current view direction, and then uses its barycentric coordinates as
weights to blend example shapes (Fig. 4(a)). However, this method
is inconvenient for artists because it is necessary to cover the model
entirely with the triangle mesh (at least 4 vertices) and it is not easy
to arbitrarily change the extent (influence) of each example.

We therefore use scattered data blending for the computation of
blending weights. Given the current view direction d, the system
first computes the Gaussian weight for each example, ¢;(z) =
exp(—(z/a;)?) where z is the angle between the two directions
d and d’, and a; > 0 is the user defined extent of the example (for
example, we use a; = 0.5 and 1.3 to make our results). We then
blend the example poses with these Gaussian weights. If the total
of the Gaussian weights exceeds 1, then the system modulates the

weights so that total equals one. If the total is less than 1, we give
the remaining weight to the base pose P°. Algorithm 1 describes
these computations. This algorithm returns the pose similar to P?
when d is close to d’, and returns a pose similar to P° when d is
far away from all examples.

Algorithm 1 Calculating weights from view directions.

: for j =1to M do
angle < ArcCos(DotProduct(d?, d));
w; + ¢;(angle);

end for

sum <— wi + -+ - + W

: if sum < 1.0 then
wo < 1.0 — sum;

else
for j = 1to M do

wj — w; / sum;
end for
wo < 0.0;
. end if

AU A

[N
W s o

4 Suppression of Ghost Momentum

The direct application of the algorithm described in the previous
section causes ghost momentum, that is, the joint chain gains un-
necessary momentum as the user changes the view direction. This
makes the joint chain look alive, which is undesirable for passive
body parts such as hairs and whiskers. A naive approach to sup-
press such ghost momentum is to use damping. However, it does
not work well because damping also suppresses the momentum
caused by external forces and internal forces that pull the current
pose towards the example manifold, making the entire animation
unnaturally slow and dull.

In order to selectively suppress the ghost momentum caused by the
change of the rest pose, we modify the velocity update step in the
PBD formulation. The idea is to use different preferred positions
for position updates and velocity updates. In generalized PBD for
OP [Miiller and Chentanez 2011], each particle is updated by

v ¢+ (xp—x)/h, (10)
X« X (11)
w < axis(qyq ') -angle(qyq ') /h, (12)
q < qp, (13)

where x,, qp, b are the estimated position, orientation, and the time
step, respectively. Please refer to [Miiller et al. 2007; Miiller and
Chentanez 2011] for the details. In our algorithm, we replace Equa-
tion 10 and 12 with

v o« (%, —x)/h, (14)
w axis(q;qfl)-angle(q;qfl)/h, (15)

where x;,, q,, are the newly introduced position and orientation,
which can suppress the undesired increase of momentum. Note
that the modifications are on the update of velocity v and angular
velocity w. The position x and orientation q are updated the same
way as generalized PBD for OP.

Fig. 5 describes the concept of our algorithm. The key idea is the
decomposition of the internal elastic force into two forces: the force
that pulls the current pose P towards the nearest pose P in the
example manifold, and the other force that pulls PP to the modi-
fied rest pose P(w). The latter force is the main cause of the ghost
momentum, so we only use the former force for velocity update.

Figure 5: The concept of our algorithm to suppress ghost momen-
tum. There is always an internal force (a) that pulls the current
deformed pose P towards the goal pose P(w). There is an exter-
nal force (b), too. We decompose the internal force to the force that
makes the pose move to the example manifold (c) and the force that
is caused roughly by changing the weights for blending the poses
(d). Finally, we use only (b) and (c) for the velocity updates.

Note that we still use P(w) for positional update so that the pose
approaches to the blended rest pose. That is, x,, and q,, for position
updates are computed using P(w) as the target position also con-
sidering the external forces and inertia, while x;, and g, for velocity

updates are computed using PP as the target position.

PP 5 a given as a linear projection of the current pose P towards
the example manifold defined by the example poses P?. Specif-
ically, PP* is defined as P(wP*’) (see Equations 4-6) and we
compute wP ™ as the weights that minimize a quadratic energy

2

; (16)

M

Zka’“ -R

k=0

proj ;
w = arg min
w

where) 24:0 wy = 1, and it can be obtained by

‘ . 1
(’u)i’ro‘]7 o w?\;OJ)T — (LTL) LT (R — RO) (17)
M
wgrOJ - 1- Z fwgroj (18)
k=1

where R, R € R*¥ =1 are the concatenations of the elements
of quaternions from Equation 9, and L = (R* — R, ..., R™ —
R%) ¢ RAN=DXM hig projection process is similar to [Koyama
et al. 2012], but these is a subtle difference in the post process-
ing. They modify the result of projection so that it stays within the
convex combination of the examples. That is, they clamp all the
weights between 0 and 1, while maintaining the total to be 1. On
the other hand, we modify the result of projection w”™’ so that it
remains sufficiently close to the weights for the current rest pose
w. We do this to avoid visual artifacts caused by the inconsistency
between positional update (by w) and velocity update (by wP?).
We omit the details of this implementation, but in short, we set a
sliding window around w, and force the wP"® to stay within the
sliding window. We also adjust the values so that the total equals to
1.

Note that all the quaternions should satisfy (q, gpivot) > 0 with a
pivot quaternion qpivot before the projection. We use qpivot = ro.
If not, we replace q with —q. This is necessary for ensuring the
interpolation paths of the example manifold are the shortest ones,
analogous to QLERP [Kavan and Zira 2005].

Figure 6: The top part of the character’s hair is always facing the
camera in the best configuration, even when the character moves or
rotates.

Figure 7: The front hair attempts to avoid the eyes. The top row
shows the camera view. The bottom row shows a fixed view.

5 Results and Discussions

Fig. 1, 6, and 7 show the results of our method'. The conditions
and performance are shown in Tab. 1. Our current implementation
works on Unity [2013], and the results are exported as interactive
games. All animations are generated at over 60 FPS, but it is diffi-
cult to accurately measure the performance of each computation.

In practice, ghost momentum can be ignored when the elastic part
is moving constantly, for example, being swayed by wind. In that
case, it is better not to use our algorithm of suppression because it
doubles the computational cost.

Limitations. There are several limitations in our method and im-
plementation. Our current method cannot handle a structure that
has loops or branches. The algorithm of suppression cannot com-
pletely suppress the increase of the momentum (see the supplemen-
tal video, 01:35). View-dependent behavior is inherently incom-
patible with physical law, and thus our formulation lacks physical
validity.

Discussions. As we mentioned above, the suppression algorithm
cannot completely solve the problem of ghost momentum. It would
be possible to explore the alternatives to this algorithm; for exam-
ple, taking view directions into account more directly for updating

'The 3D models are provided by Blender Foundation (Fig. 1), Ya-
mamoto (Fig. 6), and Kio (Fig. 7), and we modified them for simplicity. Big
Buck Bunny is copyrighted by Blender Foundation. (©) Blender Foundation.
Hatsune Miku is copyrighted by Crypton Future Media, INC. (© Crypton
Future Media, INC.

Table 1: The conditions and performance of the animations. The
numbers put in parentheses indicate the total number of joint chains
including those simulated without our method (by pure OP). FPS
indicates the frames per second of the entire system including simu-
lation, rendering, and so on. Note that all animations are generated
in over 60 FPS using a consumer-level laptop.

model #joint chains #particles #examples FPS
Bunny 2(2) 8,8 5,5 60+
Front hair 3(6) 7,5,7 3,5,1 60+
Top of head 14 3 5 60+

velocity. Another possibility is to avoid the use of the example-
based elasticity in the first place in order to achieve the view-
dependence; for example, using direct constraints on position and
velocity based on view directions in addition to the standard elastic
rod simulation.

Conclusion. In this paper, we proposed a method for controlling
elastic rod simulations by view directions for real-time 3D char-
acter animations. View-dependent control could help the artists to
achieve traditional 2D-like stylizations, or to adjust results of sim-
ulation more effectively according to view directions. Our method
is fast enough to be used in real-time environments such as games.
The algorithm for suppressing undesired increase of momentum is
empirically derived and lacks physical validity, but it is very practi-
cal and generates visually plausible results in our experiments.

Acknowledgements

We would like to thank Yasunori Harada and Nobuyuki Umetani for
many useful discussions, and anonymous reviewers for their helpful
comments. We also thank Yamamoto and Kio for their model data
and the permission for use of them, Crypton Future Media, Inc. for
the permission for use of the character, Hatsune Miku, and Blender
Foundation for the Bunny data under a Creative Commons Attribu-
tion 3.0 License. This project was funded in part by grants from the
Japanese Information-Technology Promotion Agency (IPA).

References

009 RE:CYBORG PRODUCTION COMMITTEE. 2012. 009
re:cyborg. http://009.re-cyb.org/.

BENDER, J., MULLER, M., OTADUY, M. A., AND TESCHNER,
M. 2013. Position-based methods for the simulation of solid
objects in computer graphics. In EG 2013 - STARs, Eurographics
Association, 1-22.

CHAUDHURI, P., KALRA, P., AND BANERIJEE, S. 2004. A system
for view-dependent animation. Computer Graphics Forum 23,
3, 411-420.

CHAUDHURI, P., KALRA, P., AND BANERJEE, S. 2007. Reusing
view-dependent animation. The Visual Computer 23,9-11, 707-
719.

COROS, S., MARTIN, S., THOMASZEWSKI, B., SCHUMACHER,
C., SUMNER, R., AND GROSS, M. 2012. Deformable objects
alive! ACM Trans. Graph. 31,4 (July), 69:1-69:9.

KAVAN, L., AND ZARA, J. 2005. Spherical blend skinning: a real-
time deformation of articulated models. In Proceedings of the
2005 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, I3D ’05, 9-16.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://009.re-cyb.org/

KoYAMA, Y., TAKAYAMA, K., UMETANI, N., AND IGARASHI,
T. 2012. Real-time example-based elastic deformation. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SCA *12, 19-24.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. ACM Trans. Graph.
30, 4 (July), 72:1-72:8.

MULLER, M., AND CHENTANEZ, N. 2011. Solid simulation with
oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1-92:10.

MULLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24, 3 (July), 471-478.

MULLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2 (Apr.), 109-118.

RADEMACHER, P. 1999. View-dependent geometry. In Proceed-
ings of the 26th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, SIGGRAPH ’99, 439-446.

SCHUMACHER, C., THOMASZEWSKI, B., COROS, S., MARTIN,
S., SUMNER, R., AND GROSS, M. 2012. Efficient simulation
of example-based materials. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SCA 12, 1-8.

UNITY TECHNOLOGIES. 2013. Unity. http://unity3d.
com/.

http://unity3d.com/
http://unity3d.com/

