Real-Time Example-Based **Elastic Deformation**

Y. Koyama¹, K. Takayama^{1,2}, N. Umetani¹, T. Igarashi^{1,3}

¹The University of Tokyo ²ETH Zurich

³JST ERATO

Example-Based Elastic Materials [Martin11]

Advantages

1. Artist-friendly simulation

Direct design of deformations

2. No pre-defined scenarios

-Useful for games...?

Limitation of [Martin11]

Slow

- -not real-time, not interactive
- -Finite Element Method (FEM)
- –Non-linear optimizations

Our motivation: real-time, interactive

Real-Time Demo

Shape Matching [Müller05]

- Method for deformable objects
 - Geometry, not physics
 - -Fast, robust, and stable

[Müller05]

Key ideas

= Stretch and shear

Extension to multi-region

- Overlapping local regions
 - Increasing the range of deformation

Multiple regions

Deformation Descriptor

Deformation Descriptor

$$= \mathbf{S} = \left(\mathbf{S}_1^T \ \mathbf{S}_2^T \ \cdots \ \mathbf{S}_m^T\right)^T \in \mathbb{R}^{6m}$$

Goal pose (Standard shape matching)

Goal pose (Our method)

Details of projection 1. Linear projection

Details of projection 2. Clamping to avoid extrapolation

Details of projection 3. Ensuring the deformation will return

Modifying the Shape Matching

$$\tilde{\mathbf{S}} = \left(\tilde{\mathbf{S}}_{1}^{T} \tilde{\mathbf{S}}_{2}^{T} \cdots \tilde{\mathbf{S}}_{m}^{T}\right)^{T}$$
Goal strain of each local region

Non-linear vs Linear

Results

Rough comparison 1. Quality

Very similar effect of example pose

Rough comparison 2. Performance

Two, or three orders magnitude faster

	[Martin11]	Our Method
Vertices	325	225
Time [ms]	528 / 3064 Min / Max	0.33

(twisting cuboid)

Limitation

Physical accuracy

[Good] FEM

[Poor] Shape Matching

Future Work

2D structures (e.g. cloth)

[Müller11]

1D structures (e.g. hair)

Summary

- New method for example-based materials
 - Based on shape matching technique
 - Real-time, interactive
 - Decreased physical accuracy

Case of two examples (manifold should be a plane)

Local Examples

- Separate groups
- Manipulated independently

Comparison

Model = A set of particles

Rest configuration

Rest configuration

Current configuration

Rigid transformation

(Translation + Rotation)

Pull towards the goal positions

Rigid transformation

(Translation + Rotation)

