
2021-05-12 | CHI 2021 Courses | Online

Introduction to Computational Design
Part 3: Summary and Discussion
Presenter: Yuki Koyama (AIST, Japan)

Mathematical optimizationDesign parameter tweaking

Analogy

Search for the best design Search for the maximum

Computational design: a paradigm in which design problems are formulated as
optimization problems and solved by computational techniques.

A Definition of “Computational Design”

3

Computational design is a paradigm in which design problems are formulated
mathematically and solved by computational techniques.

Computational design is a paradigm in which design problems are formulated
as optimization problems and solved by computational techniques.

A general definition:

A more focused (narrower) definition:

[Recap]

Computational Design Research

Approach:

• Formulate design processes that have been traditionally dependent on
individual skills as mathematical optimization problems, and

• Support or augment design processes by devising new ways of utilizing
computing power and mathematical tools

Goal:

• Enable efficient design workflow or sophisticated design outcomes that are
impossible in traditional approaches relying purely on the human brain

4

[Recap]

Fly-ability Haptics Fly-ability Connect-ability Haptics

The design goal (objective) is the functionality
of the designed object

SIGGRAPH 2014 CHI 2021 Pacific Graphics 2016 SIGGRAPH Asia 2015 VRST 2017

Computational design:
[Recap]

Functionality Aesthetic preference

Design Goals (Objectives)

We can compute the “goodness” of a
design by predictive simulation

We cannot compute the “goodness”
of a design as it is perceptual

Human assessment is necessary

[Recap]

Human Computation:
“[…] a paradigm for
utilizing human
processing power to
solve problems that
computers cannot yet
solve.” [von Ahn 05]

A Systematic Approach to Input Human Assessment

0110
0101
1101

Processor Human Processors

Function call
(Query)

Return value

A. J. Quinn and B. B. Bederson. 2011. Human computation: a survey and taxonomy of a growing field. In Proc. CHI '11. 1403-1412.
von Ahn, L. Human Computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU, (2005).

Either crowd workers or the single user

[Recap]

Human-in-the-Loop Optimization

Human-in-the-loop
optimization is used
for solving problems
with “subjective”
objective functions
(e.g., preference)

8

0110
0101
1101 🤔

Query

Feedback

Iterative search process

“I don’t know the objective
function, but I want to find

the maximizer…”

[Recap]

Summary

• Computational design is a paradigm in which design problems are
formulated as mathematical optimization and solved using computational
techniques

• HCI topics: Functional fabrication, haptics, user interface, visual design, etc.

• Human-in-the-loop optimization can be used for solving problems with
perceptual objective functions (e.g., preference)

• Tight integration between algorithm design and interface design would
be the key to achieve higher efficiency

9

Discussion

Discussion: Exploratory Design

11

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun. 2009. Exploratory modeling with collaborative design spaces. ACM Trans.
Graph. 28, 5 (December 2009), 1–10. DOI:https://doi.org/10.1145/1618452.1618513

 “Exploratory modeling is open-ended: the user begins the design process with
an under-specified goal, and the precise form of the final model is

established through experimentation […]”

https://doi.org/10.1145/1618452.1618513

Discussion: Exploratory Design

12

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun. 2009. Exploratory modeling with collaborative design spaces. ACM Trans.
Graph. 28, 5 (December 2009), 1–10. DOI:https://doi.org/10.1145/1618452.1618513

 “Exploratory modeling is open-ended: the user begins the design process with
an under-specified goal, and the precise form of the final model is

established through experimentation […]”

The objective function is unknown at
the beginning, and it can even change
during the design process

Adaptive techniques (e.g., online
machine learning) should be used

https://doi.org/10.1145/1618452.1618513

Discussion: ”Optimization-in-the-Loop” Design Iteration

13

Discussion: ”Optimization-in-the-Loop” Design Iteration

14

min
x

f(x)

Automatic
optimization

Manual
content edit

🤔
The designer decides

what to do next

Design
iteration

Discussion: ”Optimization-in-the-Loop” Design Iteration

15

Sketchplore: Sketch and Explore with a Layout Optimiser
Kashyap Todi1,2

kashyap.todi@uhasselt.be
Daryl Weir1

daryl.weir@aalto.fi
Antti Oulasvirta1

antti.oulasvirta@aalto.fi
1Aalto University
Helsinki, Finland

2Hasselt University - tUL - iMinds
Diepenbeek, Belgium

+

Local
Optimiser

Global
Optimiser

Search
Space

Predictive Models Explore

Canvas

Timeline

Current Design
Design Space

Real-Time Optimisation Sketchploration Environment

Figure 1: Sketchplorer is an interactive layout sketching tool supported by real-time model-based optimisation. The tool is
designed to facilitate the creative and problem-solving aspects of sketching without requiring extensive input. While a designer
is sketching, a design task is automatically inferred. The optimiser uses predictive models to make suggestions for local and
global changes that improve usability and aesthetics. Suggestions appear on the side, and never override the designer’s work.

ABSTRACT
This paper studies a novel concept for integrating real-time
design optimisation to a sketching tool. Although optimi-
sation methods can attack very complex design problems,
their insistence on precise objectives and a point optimum is
a poor fit with sketching practices. Sketchplorer is a multi-
touch sketching tool that uses a real-time layout optimiser. It
automatically infers the designer’s task to search for both lo-
cal improvements to the current design and global (radical)
alternatives. Using predictive models of sensorimotor perfor-
mance and perception, these suggestions steer the designer
toward more usable and aesthetic layouts without overriding
the designer or demanding extensive input.

Author Keywords
Sketching; Model-based optimisation; Visual Layouts

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DIS 2016, June 04–08, 2016, Brisbane, QLD, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
© 2016 ACM. ISBN 978-1-4503-4031-1/16/06$15.00
DOI: http://dx.doi.org/10.1145/2901790.2901817

INTRODUCTION
This paper is motivated by the observation that optimisation
methods have great untapped potential in design tools. We
focus on the activity of sketching layouts, in which a designer
places, colours, organises, and defines elements on a canvas.
From a combinatorial perspective, the design of layouts is no-
toriously hard. For a canvas of 1024⇥768 pixels, divided into
a 24⇥32 grid, as in the tool presented here, there are 158,400
one-element layouts and a whopping 1041 eight-element lay-
outs. Although algorithms may not be able to find the op-
timal solution in such large search spaces, they can “paral-
lelise” search, and find candidate solutions and suggest them
to designers. This could help designers in exploration, who
are known to be limited to a handful of designs per iteration
[8]. Also, algorithms can complement designers by explor-
ing design spaces neutrally without being constrained by past
experiences, to produce designs that the designer might not
otherwise conceive. Employing an optimiser might also im-
prove the quality of designs for end-users (see [12, 33, 45]).

However, several hard research challenges emerge. First, lay-
out design is a complex, multi-objective task addressing not
only usability but also aesthetic qualities [15, 44]. Presently
no algorithmic approach exists that can address both. Sec-
ond, optimisation typically takes a long time, due to combi-
natorial complexity, and no solution has been shown for fast-
paced, iterative design of layouts. Third, although optimisa-
tion methods can attack very complex design problems, their

Tool/UI Design DIS 2016, June 4–8, 2016, Brisbane, Australia

543

MenuOptimizer: Interactive Optimization of Menu Systems
Gilles Bailly1 Antti Oulasvirta1 Timo Kötzing 2 Sabrina Hoppe1

1Max Planck Institute for Informatics and Saarland University 2University of Jena

ABSTRACT
Menu systems are challenging to design because design
spaces are immense, and several human factors affect user
behavior. This paper contributes to the design of menus
with the goal of interactively assisting designers with an
optimizer in the loop. To reach this goal, 1) we extend a
predictive model of user performance to account for ex-
pectations as to item groupings; 2) we adapt an ant colony
optimizer that has been proven efficient for this class of
problems; and 3) we present MenuOptimizer, a set of inter-
actions integrated into a real interface design tool (QtDe-
signer).- MenuOptimizer supports designers’ abilities to
cope with uncertainty and recognize good solutions. It al-
lows designers to delegate combinatorial problems to the
optimizer, which should solve them quickly enough without
disrupting the design process. We show evidence that satis-
factory menu designs can be produced for complex prob-
lems in minutes.-

Author Keywords
Menus; Predictive models; Interactive optimization.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Menu systems, consisting of menus, hotkeys or toolbars,
are widespread interfaces for selecting commands. Interface

design strongly affects their usability. However, despite
apparent simplicity, designing usable menu systems is chal-
lenging because the number of alternative designs grows
superexponentially as a function of the number of com-
mands. For instance, a linear menu with n items can, in
theory, be organized in n! ways. However, professional
applications comprise hundreds of items organized in hier-
archical menus. A menu hierarchy can be organized in
about (2n)! ways. For 50 items, the size of the search space
is a whopping 100! ��10158. Design heuristics, such as plac-
ing frequently used items at the top [5], may be effective for
small n but fail with larger n or if additional human factors
such as semantic relationships among items are considered.
Although experts can quickly generate a handful of solu-
tions to hard design problems [6], they cannot examine all
promising solutions. Novices, known to search the space
depth-first [3], are likely to get stuck in a local search space.

Combinatorial optimization methods (e.g., [29]) have been
successfully used to generate user interfaces such as virtual
keyboards [8,21,24,34]. These methods explore a large
number of designs in order to find ones that minimize or
maximize a pre-specified objective function. Computation
time is on a scale of hours, days, or weeks. While empirical
evidence confirms improvements in usability in other con-
texts (e.g., [24,34]), there is reason to suggest that they may
be impractical for the design of menu systems. First, de-
signers cannot be expected to wait days or weeks for a solu-
tion. Moreover, designers may not be able to define the
optimization problem completely in advance. Interaction
design, in general, is rather more an iterative process of
redefinition and refinement. Finally, predictive models for
menu systems performance are only just emerging
[5,20,25], are limited to linear menus, and have yet to cover
all important human factors that affect design choices.

Figure 1: MenuOptimizer assists in the design of menus: While the designer edits the menu (action in red), a model-based optimizer
updates itself to provide feedback and suggestions (in blue): A) Item feedback indicates the frequency (line width) and user per-
formance over time (color gradient). B–C) Hotkeys and separators are automatically assigned. D) Item placements to improve user
performance are suggested. E) Designers can normally edit items (move, delete, etc.) and also F) lock items to constrain them to-
gether to accelerate optimization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.
Copyright © 2013 ACM 978-1-4503-2268-3/13/10…$15.00.
http://dx.doi.org/10.1145/2501988.2502024

GUI UIST’13, October 8–11, 2013, St. Andrews, UK

331

DesignScape: Design with Interactive Layout Suggestions
Peter O’Donovan1,2

1Dept. of Computer Science
University of Toronto

odonovan@dgp.toronto.edu

Aseem Agarwala2

2Adobe Research
Seattle, WA, USA

asagarwa@adobe.com

Aaron Hertzmann1,3

3Adobe Research
San Francisco, CA, USA

hertzman@adobe.com

ABSTRACT
Creating graphic designs can be challenging for novice users.
This paper presents DesignScape, a system which aids the
design process by making interactive layout suggestions, i.e.,
changes in the position, scale, and alignment of elements.
The system uses two distinct but complementary types of
suggestions: refinement suggestions, which improve the cur-
rent layout, and brainstorming suggestions, which change the
style. We investigate two interfaces for interacting with sug-
gestions. First, we develop a suggestive interface, where sug-
gestions are previewed and can be accepted. Second, we de-
velop an adaptive interface where elements move automati-
cally to improve the layout. We compare both interfaces with
a baseline without suggestions, and show that for novice de-
signers, both interfaces produce significantly better layouts,
as evaluated by other novices.

Author Keywords
Graphic design, suggestion interfaces, adaptive design

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques
User Interfaces

INTRODUCTION
Graphic design is ubiquitous in modern life. Unfortunately,
creating designs can be difficult, particularly for novices, who
often wish to create simple posters, cards, or social media de-
signs. Starting from a blank canvas can be overwhelming, and
exploring alternatives is time-consuming. Novice designers
also make a variety of mistakes, from misalignment to incor-
rect emphasis of elements. Existing tools range from simple
template-based interfaces like PowerPoint, to complex sys-
tems like Illustrator. However, these tools provide no sugges-
tions when modifying templates or designs.

This paper presents a novel system for graphic design using
layout suggestions, i.e., changes in the size, position, and
alignment of elements. Our system proposes two comple-
mentary types of suggestions: refinements which improve the
current layout, and brainstorming suggestions which explore
alternative layouts with large changes in style (see Fig. 1).
Exploration and refinement are critical and complementary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18 - 23, 2015, Seoul, Republic of Korea
Copyright 2015 ACM 978-1-4503-3145-6/15/04
http://dx.doi.org/10.1145/2702123.2702149

Figure 1. DesignScape Interface. The central canvas allows the user to
create layouts in a simple editor. On the left, the system provides refine-
ment suggestions, layouts similar to the canvas, but slightly improved.
On the right, the system provides brainstorming suggestions large-scale
layout changes in a variety of styles. Photos courtesy of Wilhelm Joys
Andersen and Martin Fisch.

tasks in design. However, exploration is difficult since a de-
signer must imagine possible layouts, and modify many ele-
ments. Refinement is also difficult, since a single modifica-
tion can necessitate many other changes. Our system includes
both types, allowing users to easily switch between exploring
alternative layouts and refining the current layout.

We use an energy-based model to generate designs that en-
code design principles such as symmetry, alignment, and
overlap. User constraints are used to infer the designer’s in-
tent, and to make refinement suggestions on the current lay-
out. We also learn a “style space” from examples, which can
be used to generate new layouts in a variety of styles, provid-
ing starting points for design. The system can also retarget
layouts, allowing the user to easily modify the design size.

We also investigate different ways users can interact with sug-
gestions. First, we develop a suggestive interface, where sug-
gestions are previewed and accepted. Second, we develop an
adaptive interface which moves elements automatically. The
two modes are compared to a baseline without suggestions
by novice users on Mechanical Turk, and the quality of the
resulting layouts are also evaluated. Both modes produce sig-
nificantly better designs than the baseline on average. Lastly,
we demonstrate the system’s use for tablet-based design.

RELATED WORK
Exploring alternatives is a vital part of the design process.
Gross and Do [2] present a prototyping interface which allows
users to sketch drawings and store alternatives. Terry et al. [7]
present an interaction technique which allows users to save
and embed alternatives during the design process, and easily
manipulate alternatives at a later point. Dow et al. [1] find that
forcing users to create multiple design alternatives, instead
of refining a single design, leads to improved results. Lee

Supporting Creativity through UX Design CHI 2015, Crossings, Seoul, Korea

1221

Sketchplore
(DIS 2016)

MenuOptimizer
(UIST 2013)

DesignScape
(CHI 2015)

Discussion: UX of Human-in-the-Loop Optimization

16

Yijun Zhou, Yuki Koyama, Masataka Goto, and Takeo Igarashi. 2021. Interactive Exploration-Exploitation Balancing for Generative Melody Composition.
In Proceedings of the 26th International Conference on Intelligent User Interfaces (IUI '21), pp.43–47. DOI:https://doi.org/10.1145/3397481.3450663

[Zhou+, IUI 2021]
This paper investigates how
the user feels when the
variation of the candidates
(exploration vs. exploitation)
can be manually controlled

C.f., Human-AI collaboration

https://doi.org/10.1145/3397481.3450663

C++ Implementation & Python Bindings Available on GitHub

• https://github.com/yuki-koyama/mathtoolbox

• Bayesian optimization (BO)

• https://github.com/yuki-koyama/sequential-line-search

• Preferential Bayesian optimization (PBO)

• Sequential line search

• https://github.com/yuki-koyama/sequential-gallery

• Sequential gallery

17

https://github.com/yuki-koyama/mathtoolbox
https://github.com/yuki-koyama/sequential-line-search
https://github.com/yuki-koyama/sequential-gallery

Questions / Comments

18

(URL REMOVED)

Acknowledgment: I thank all the collaborators!

• Nobuyuki Umetani

• Ryan Schmidt

• Takeo Igarashi

• Morihiro Nakamura

• Masa Ogata

• Eisuke Fujinawa

• Shigeo Yoshida

• Takuji Narumi

• Tomohiro Tanikawa

• Michitaka Hirose

• Shinjiro Sueda

• Emma Steinhardt

• Ariel Shamir

• Wojciech Matusik

• Daisuke Sakamoto

• Issei Sato

• Masataka Goto

2021-05-12 | CHI 2021 Courses | Online

Introduction to Computational Design
Presenter: Yuki Koyama (AIST, Japan)

