Introduction to Computational Design Part 2: Human in the Loop

Presenter: Yuki Koyama (AIST, Japan)

2021-05-12 | CHI 2021 Course | Online

Human-in-the-Loop Optimization: Motivation

Computational design:

Computational design:

SIGGRAPH 2014

Fly-ability

Haptics

Pacific Graphics 2016

SIGGRAPH Asia 2015

VRST 2017

Fly-ability

Connect-ability

Haptics

Computational design:

SIGGRAPH 2014

Pacific Graphics 2016

Fly-ability

Haptics

The design goal (objective) is the functionality of the designed object

SIGGRAPH Asia 2015

VRST 2017

Fly-ability

Connect-ability

Haptics

Stand-ability [Prévost+13]

Structural strength [Stava+12]

The design goal (objective) is the functionality of the designed object

Functionality

Functionality

Aesthetic preference

Functionality

We can compute the "goodness" of a design by predictive simulation, etc.

Aesthetic preference

We cannot compute the "goodness" of a design as it is perceptual and subjective

Functionality

We can compute the "goodness" of a design by predictive simulation, etc.

Aesthetic preference

We cannot compute the "goodness" of a design as it is perceptual and subjective

Human assessment is necessary

The objective function is perceptually and subjectively defined, and so only human can assess the goodness of design

Design parameters

Systematic Human Assessment

A Systematic Approach to Input Human Assessment

A. J. Quinn and B. B. Bederson. 2011. Human computation: a survey and taxonomy of a growing field. In Proc. CHI '11. 1403-1412. von Ahn, L. Human Computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU, (2005).

A Systematic Approach to Input Human Assessment

Human Computation: "[...] a paradigm for utilizing human processing power to solve problems that *computers cannot yet* solve." [von Ahn 05]

A. J. Quinn and B. B. Bederson. 2011. Human computation: a survey and taxonomy of a growing field. In Proc. CHI '11. 1403-1412. von Ahn, L. Human Computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU, (2005).

A Systematic Approach to Input Human Assessment

Human Computation: "[...] *a paradigm for* utilizing human processing power to solve problems that *computers cannot yet* solve." [von Ahn 05]

A. J. Quinn and B. B. Bederson. 2011. Human computation: a survey and taxonomy of a growing field. In Proc. CHI '11. 1403-1412. von Ahn, L. Human Computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU, (2005).

Either crowd workers or the single user

Which one do you prefer perceptually?

A. J. Quinn and B. B. Bederson. 2011. Human computation: a survey and taxonomy of a growing field. In Proc. CHI '11. 1403-1412. von Ahn, L. Human Computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU, (2005).

Crowd-Powered Parameter Analysis for Visual Design Exploration Y. Koyama, D. Sakamoto, T. Igarashi UIST 2014

Parametric design is ubiquitous in digital content creation

Photo color enhancement

Procedural modeling

ML-based content generation

Goal: Search for the Best Preferable Design Parameters

E.g., photo color enhancement

20

Design Space ${\cal D}$

Human Processors

Preference data generation [pairwise comparison]

Target Paramete(c.f., 2000 comparisons, 4 USD, 30 min) Human Processors

3	4	5	
\bigcirc	\bigcirc	e la	

Design Space ${\cal D}$

Human Processors

Goodness-Aware Sliders Visualization of the crowds' preference Green) Interactive optimization of slider values

VisOpt Slider

\mathbf{X}

max Preference(x) X

Computationally estimate the perceptual function shape Support the user's manual search

max Preference(**x**)

Is it possible to computationally execute the search itself?

Human-in-the-Loop Optimization

Human-in-the-Loop Optimization

Human-in-the-loop optimization is used for solving problems with "subjective" objective functions (e.g., preference)

Considerations [1/2]: Query Design

Considerations [1/2]: Query Design

Absolute assessment should be avoided:

The user cannot reliably answer the function value [Brochu+10; Koyama+18]

[Koyama+, Computational Interaction (2018)] Yuki Koyama and Takeo Igarashi. 2018. Computational Design with Crowds. In Computational Interaction (Eds. A. Oulasvirta, P. O. Kristensson, X. Bi, and A. Howes), Oxford University Press, pp.153–184. https://arxiv.org/abs/2002.08657

Considerations [1/2]: Query Design

Absolute assessment should be avoided:

The user cannot reliably answer the function value [Brochu+10; Koyama+18]

Relative assessment should be used:

The user can answer which option is better among two (or more) options

[Koyama+, Computational Interaction (2018)] Yuki Koyama and Takeo Igarashi. 2018. Computational Design with Crowds. In Computational Interaction (Eds. A. Oulasvirta, P. O. Kristensson, X. Bi, and A. Howes), Oxford University Press, pp.153–184. https://arxiv.org/abs/2002.08657

Considerations [2/2]: Number of Queries

Considerations [2/2]: Number of Queries

- The number of total queries should be sufficiently small
 - Human evaluators will be prohibitively slow (compared to typical optimization settings)
 - Human evaluators will get tired and won't be willing to respond to so many queries

This takes at least a few seconds

An Approach: Preferential Bayesian Optimization

- Preference Bayesian optimization (PBO) is a promising technique for human-in-the-loop optimization frameworks
 - the-loop settings

• PBO is an extension of Bayesian optimization (BO) tailored for human-in-

An Approach: Preferential Bayesian Optimization

- **Preference Bayesian optimization (PBO)** is a promising technique for human-in-the-loop optimization frameworks
 - PBO is an extension of Bayesian optimization (BO) tailored for human-inthe-loop settings
- Benefits
 - PBO can proceed using relative assessment queries (instead of absolute scoring)
 - PBO can find a good solution with only a small number of queries

What is Bayesian Optimization?

 $\mathbf{x}^* = \arg \max f(\mathbf{x})$ $\mathbf{x} {\in} \mathbb{R}^n$

 $\mathbf{x}^* = \arg \max f(\mathbf{x})$ $\mathbf{x} \in \mathbb{R}^n$

- A maximization problem with a "blackbox" objective function
 - We cannot observe the gradient
 - The function can have multiple local maxima

 $\mathbf{x}^* = \arg \max f(\mathbf{x})$ $\mathbf{x} {\in} \mathbb{R}^n$

- A maximization problem with a "blackbox" objective function
 - We cannot observe the gradient
 - The function can have multiple local maxima
- Q: How should we sample points?

A naïve strategy: random sampling

 $\mathbf{x}^* = \operatorname*{arg max}_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$

- A maximization problem with a "blackbox" objective function
 - We cannot observe the gradient
 - The function can have multiple local maxima
- Q: How should we sample points?

 $\mathbf{x}^* = \arg \max f(\mathbf{x})$ $\mathbf{x} \in \mathbb{R}^n$

- A maximization problem with a "blackbox" objective function
 - We cannot observe the gradient
 - The function can have multiple local maxima
- Q: How should we sample points?
 - We want to minimize the number of necessary sampling points

Bayesian Optimization (BO)

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the Human Out of the Loop: A Review of Bayesian Optimization," in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218

Bayesian Optimization (BO)

- BO is a global "black-box" optimization algorithm
- BO can find optimal solutions with only a small number of function evaluations by the use of "acquisition function" (next slide)
 - Thus, BO is useful especially when the objective function is expensive-to-evaluate
- Example applications:
 - Hyperparameter tuning for machine learning models [Akiba+, KDD 2019]
 - Fabrication-in-the-loop drawing haptics design [Piovarči+, SIGGRAPH 2020]

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, "Taking the Human Out of the Loop: A Review of Bayesian Optimization," in Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218

Acquisition Function

Acquisition Function

- An acquisition function evaluates how effective a point is if it is sampled in the next iteration
 - The maximizer of the acquisition function will be sampled in the next iteration

Acquisition Function

- An acquisition function evaluates how effective a point is if it is sampled in the next iteration
 - The maximizer of the acquisition function will be sampled in the next iteration
- Acquisition functions are usually designed to balance exploration and exploitation
 - **Exploration:** Prioritize large uncertainty
 - **Exploitation:** Prioritize high predicted value

Step-by-Step Explanation

Bayesian Optimization

0.0 0.2

Bayesian Optimization

0.0 0.2

Gaussian process regression (The light blue means the confidence)

0.0

0.2 0.4 0.6 0.8 1.0

0.0 0.2

0.8 0.6 1.0

0.0 0.2

0.0 0.2

Now this acquisition function considers it is worth sampling the unvisited region (exploration)

Bayesian Optimization [#iterations = 09]

0.0 0.2

Bayesian Optimization [#iterations = 10]

Bayesian Optimization [#iterations = 11]

Bayesian Optimization [#iterations = 12]

0.2

We could find a very nice solution with only 12 iterations in this case

Preferential Bayesian Optimization (PBO)

Preferential Bayesian Optimization (PBO)

- PBO is an extension of BO, which runs with relative assessment
- feedbacks
 - Recall: human is expensive-to-query

(preferential feedback), rather than absolute assessment of function values

PBO can find optimal solutions with only a small number of preferential

t = 5

t = 6

t = 7

t = 8

n-dimensional

Y. Koyama, I. Sato, D. Sakamoto, and T. Igarashi ACM Trans. Graph. (a.k.a. SIGGRAPH 2017)

Sequential Line Search for Efficient Visual Design Optimization by Crowds

Contributions

Concept: Crov Solve optimizat

computation

Technique: Sequential Line Search

Propose a new extension of **preferential Bayesian optimization (PBO)** that is even more efficient

Concept: Crowd-Powered Design Optimizer

Solve optimization problems using human

"Crowdsource" button in the tool

Crowd-in-the-loop optimization

[Koyama+, SIGGRAPH 2017] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential Line Search for Efficient Visual Design Optimization by Crowds. ACM Trans. Graph. 36, 4, pp.48:1–48:11 (2017). https://doi.org/10.1145/3072959.3073598

"People's Choice" optimal slider values

Crowdsource

[Koyama+, SIGGRAPH 2017] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential Line Search for Efficient Visual Design Optimization by Crowds. ACM Trans. Graph. 36, 4, pp.48:1–48:11 (2017). <u>https://doi.org/10.1145/3072959.3073598</u>

Sequential line search (a new PBO extension)

[Koyama+, SIGGRAPH 2017] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential Line Search for Efficient Visual Design Optimization by Crowds. ACM Trans. Graph. 36, 4, pp.48:1–48:11 (2017). <u>https://doi.org/10.1145/3072959.3073598</u>

Task: Choose the image that looks better

Basic: Pairwise comparison (e.g., [Brochu+, NIPS 2007])

Task: Choose the image that looks better

Basic: Pairwise comparison (e.g., [Brochu+, NIPS 2007])

Task: Adjust the slider so that the image looks the best

Advanced: Single-slider manipulation (provides much richer information)

Task: Choose the image that looks better

Basic: Pairwise comparison (e.g., [Brochu+, NIPS 2007])

Task: Adjust the slider so that the image looks the best

Advanced: Single-slider manipulation

(provides much richer information)

Slider space *S* : 1D subspace mapped to a slider

$\mathbf{x}^+ = rg \max \mu(\mathbf{x})$ $\mathbf{x} \in \{\mathbf{x}_i\}$

The best point among the already visited points

$\mathbf{x}^+ = \arg \max \, \mu(\mathbf{x})$ $\mathbf{x} \in \{\mathbf{x}_i\}$

The best point among the already visited points

$\mathbf{x}^{\mathrm{EI}} = \mathrm{arg\,max}\,\mathrm{EI}(\mathbf{x})$ $\mathbf{x} \in \mathcal{X}$

The point that maximizes the "expected improvement" (EI)

Applications #1 Photo Color Enhancement (6D)

Original Photographs

Results

Original Photographs

Results

Evaluation: Crowdsourced Voting

Q. Which one do you like?

Original

By Crowds

By Photoshop

Preferred by:

Photoshop Crowds Lightroom

26

2

3

1

Preferred by:

Preferred by:

Crowds Photoshop Lightroom

23

3

6

Preferred by:

Q. Which one do you like?

Original

By Crowds

As they are the "people's choice" enhancements, people preferred them

By Photoshop

By Lightroom

Applications #2 Material Appearance (3D / 7D)

Reference

Result (3D)

Reference

Result (3D)

Evaluation Efficiency Comparison

Experiment: Photo Color Enhancement with a Reference

Mean

Sequential line search (Ours) Pairwise comparison [Brochu+07] 4-option comparison (another baseline)

X

Solve this design problem by a new human-in-the-loop optimization technique called **sequential line search**, which is a new extension of preferential Bayesian optimization (PBO)

X

The "line search" task design was simple enough for crowdsourcing and was useful to reduce the number of necessary iterations

Solve this design problem by a new human-in-the-loop optimization technique called **sequential line search**, which is a new extension of preferential Bayesian optimization (PBO)

Evaluators in Human-in-the-Loop Optimization

Evaluators

Evaluators

Crowd-in-the-loop optimization

- Features:
- General (average) preference
- Automatic execution
- Task design: should be simple enough

Evaluators

• Crowd-in-the-loop optimization

- Features:
- General (average) preference
- Automatic execution
- Task design: should be simple enough

• User-in-the-loop optimization

- Features:
- Personal preference
- Interactive execution
- Task design: can be more complex

Target problem

Interactive search within a plane

(= plane) (= plane) (= plane) (= plane) Y. Koyama, I. Sato, and M. Goto ACM Trans. Graph. (a.k.a. SIGGRAPH 2020)

. . .

Interactive search within a plane

Found solution

Overview Proposed System: Sequential Gallery

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

118

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization.

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Sequential Gallery:

An interactive optimization framework where the user sequentially performs 2D search subtasks via a grid interface

Query Design Plane Search Query

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

128

[Ours] **"Plane Search" Query** (Sequential Plane Search)

[Brochu+ NIPS 2007]

$$\mathbf{x}^{\text{chosen}} = \operatorname*{argmax}_{\mathbf{x} \in \mathscr{P}} g(\mathbf{x})$$

Needs even fewer iterations, and has a good compatibility with grid interfaces

Sequential Gallery Workflow

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

130

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

• • •

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

• • •

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

• • •

User's feedback

 \mathbb{R}^{n}

Next search plane

2-dimensional search subspaces (= search planes) determined by the sequential plane search algorithm

• • •

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

• • •

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

• • •

2D search subtask

• • •

2D search subtask

 \mathbb{R}^{n}

• • •

2D search subtask

User's feedback

 \mathbb{R}^{n}

2-dimensional search subspaces (= **search planes**) determined by the **sequential plane search** algorithm

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization

Next search plane

ACM Trans, Graph, (SIGGRAPH 2020).

• • •

2D search subtask

• • •

2D search subtask

• • •

2D search subtask

2D search subtask

• • •

2D search subtask

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

2D search subtask

Benefits of Grid Gallery Interface

- Allows the user to easily grasp the available options in the 2D subspace by just seeing the grid view
- WYSIWYG (What-You-See-Is-What-You-Get); do not need to be aware of raw parameters
- Compatibility with the sequential-planesearch task (i.e., 2D search)

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

145

Applications: Possible Scenarios and Demonstrations

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

Photo Color Enhancement (12D)

Brightness, contrast, saturation, shadows (RGB), midtones (RGB), and highlights (RGB)

Zoom #1 » Zoom #2 » Zoom #3 » Zoom #4

x1.5 speed

Original photograph

Enhanced photograph (after 4 iterations)

Body Shaping (10D) Using the SMPL model [Loper+15] (the first 10 principal components)

Goal: Body shaping from a character description

"He was of medium height, solidly built, wide in the shoulders, thick in the neck, with a jovial heavy-jawed red face [...]"

Dashiell Hammett. 1930. The Maltese Falcon.

"He was of medium height, solidly built, wide in the shoulders, thick in the neck, with a jovial heavy-jawed red face [...]"

Dashiell Hammett. 1930. The Maltese Falcon.

Evaluation: Optimization Performance Comparison

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

154

Algorithms to be Compared

Sequential line search [Koyama+17]

Sequential plane search, but the plane is randomly chosen (instead of using the acquisition function)

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

Baseline 2: **SPS (Random)**

SPS (Ours)

 $\mathcal{X}: n$ -dim space

Sequential plane search (using the acquisition function)

155

Result: Performance Comparison

Performance: SLS < SPS (random) < SPS (ours)

Yuki Koyama, Issei Sato, and Masataka Goto. Sequential Gallery for Interactive Visual Design Optimization. ACM Trans. Graph. (SIGGRAPH 2020)

max Preference(x)

User-in-the-loop Bayesian optimization with a tailored interface could solve this problem with only a small number of iterations

max Preference(x) X

User-in-the-loop Bayesian optimization with a tailored interface could solve this problem with only a small number of iterations This efficiency was achieved by the tight integration between algorithm design and interface design

The objective function is defined solely by human preference

Loop: the system provides candidates, and the evaluators evaluate them

The objective function is defined solely by human preference

The objective function is mostly defined in a machine-executable way, but **needs to be adjusted by** human preference

Loop: the system provides candidates, and the evaluators evaluate them

The objective function is defined solely by human preference

The objective function is mostly defined in a machine-executable way, but **needs to be adjusted by** human preference

Loop: the system provides candidates, and the evaluators evaluate them

How can the system involve human in the loop?

OptiMo: Optimization-Guided Motion Editing for Keyframe Character Animation Y. Koyama and M. Goto CHI 2018

0

How can animators effectively utilize optimization techniques in motion editing?

Optimization for Full Automation?

Optimization can fully automate the task, but results are not always satisfactory (no control...)

164

We support real-time manual control over automatic adjustment by optimization

Search variables: Interpolation curve parameters for keyframe animation

$\min \operatorname{Cost}(\mathbf{x}, \theta)$

Objective function: Motion smoothness, which has been used in graphics research

Interactive control by animators

Automatic adjustment by optimization

"during" the optimization loop

Interactive control by animators

Automatic adjustment by optimization

Another approach to human-in-the-loop optimization, where the objective function is adjustable by the user

"during" the optimization loop

Summary [1/2]

- Human-in-the-loop optimization can be used for solving problems with **perceptual objective functions** (e.g., preference)
- Preferential Bayesian optimization (PBO) is a promising technique
 - PBO can reduce the number of necessary **queries** (c.f., human is expensive-to-evaluate)
 - PBO can use relative assessment (c.f., human is not good at providing absolute assessment)

Which is better, A or B?

Let me see. Hmm... **Probably A?**

Summary [2/2]

• **Tight integration between algorithm design and interface design** is the key to achieve **higher efficiency** in human-in-the-loop optimization systems

Sequential line search [SIGGRAPH 2017] Sequential plane search [SIGGRAPH 2020]

Introduction to Computational Design Part 2: Human in the Loop

Presenter: Yuki Koyama (AIST, Japan)

2021-05-12 | CHI 2021 Course | Online

