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ABSTRACT
Computational design is one of the hot topics in HCI and related
research fields, where various design problems are formulated us-
ing mathematical languages and solved by computational tech-
niques. By this paradigm, researchers aim at establishing highly
sophisticated or efficient design processes that otherwise cannot
be achieved. Target domains include graphics, personal fabrication,
user interface, etc. This course introduces fundamental concepts in
computational design and provides an overview of the recent trend.
It then goes into a more specific case where human assessment
is necessary to evaluate the quality of design outcomes, which is
often true in HCI scenarios. This course is recommended to HCI
students and researchers who are new to this topic.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
Computational design, optimization, human-in-the-loop, crowd-
sourcing, machine learning
ACM Reference Format:
Yuki Koyama. 2021. Introduction to Computational Design. In CHI Confer-
ence on Human Factors in Computing Systems Extended Abstracts (CHI ’21
Extended Abstracts), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3411763.3445007

1 INTRODUCTION
1.1 What is Computational Design?
1.1.1 Definition. Computational techniques, such as optimization
and machine learning, have recently played an increasingly impor-
tant role in enhancing human-computer interaction (HCI). Com-
putational design is one of the emerging hot topics in this context.
Since there has seemed no established definition yet [2], we define
it as follows and will use it in this course: Computational design
is a paradigm in which design problems are formulated mathemati-
cally and solved by computational techniques. The formulated design
problem takes the form of optimization in most cases [2], and the
optimization is performed as the process of searching for the best
design among some options either in an automatic way by running
optimization algorithms, in a manual way with computationally
enabled support, or in a hybrid way using computational systems
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with having a human in the loop [4]. The primary goal of com-
putational design research is to establish sophisticated or efficient
design processes that otherwise cannot be achieved [4]. This topic
has also been actively studied in related fields, such as computer
graphics. Application domains include visual design [7, 8], personal
fabrication [12, 15], user interface [11], interactive device [1, 3],
robotics [9], etc.

1.1.2 Design as Optimization. Typical optimization problems can
be described using the mathematical language in the form of

x∗ = arg max
x∈X

f (x). (1)

The message of this equation is simple: the variable set x∗ is the
maximizer of the function f within the candidate space X. See Fig-
ure 1 for illustration. This equation involves the following concepts,
each of which can be interpreted as a concept in design:

Search variable set x: This concept is about design parameter
set in the design context and determines which parameters
will be computationally manipulated in the optimization pro-
cess. It can consist of either a single parameter or multiple
parameters. For example, it can include font size, font color,
background color, etc., in web design scenarios. These pa-
rameters can be either discrete (e.g., font) or continuous (e.g.,
font size).

Search space X: This concept is about design space in the de-
sign context and represents the set of all the possible design
choices. If the search variables are discrete, then the search
space is a list of candidates (e.g., X = {“Times”, “Helvetica”}
if x consists of a font parameter). If the search variables are
continuous, then the search space can also be continuous.

Objective function f : This concept is about design goal and
determines the criterion based on which the design artifact
is evaluated. In other others, this function quantifies how
good a given choice is.

Optimal solution x∗: This concept represents the variable set
that provides the best possible design. Here, “best” means
that the value of the objective function is maximized (or
minimized, depending on the formulation). This is found as
the outcome of the optimization process.

We can describe many design problems using these concepts. This
course will review representative works from various design do-
mains and explain how researchers have formulated actual design
problems using these concepts.

Designing an appropriate objective function is the key to success
and often requires an extensive understanding of the target design
problem. It can be implemented using predictive models of human
perception or behavior, which can be either rule-based or data-
driven, physical simulation, direct query-by-query response from
human evaluators, etc.
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Figure 1: Illustration of basic concepts in optimization. An
optimization problem is considered as a problem of finding
the maximizer of the objective function within the search
space.We apply this framework to various design problems.

Once the target design problem is formulated as an optimiza-
tion problem, we can solve it by applying existing optimization
algorithms (e.g., gradient descent, Newton’s method, and simulated
annealing) from existing libraries (e.g., SciPy [16]) in most cases.
Note that researchers need to choose an appropriate optimization al-
gorithm that is compatible with the target problem. This course will
explain basic considerations for the choice, but for those interested
in further details, we suggest referring to the book [10].

1.2 Human in the Loop
Objective functions often involve subjective preferential evaluation.
For example, the goal of photo color enhancement is typically to
find the most “subjectively pleasing” photo enhancement by ad-
justing parameters such as brightness, contrast, and saturation [6].
In such cases, it is often difficult to implement appropriate objec-
tive functions since accurately predicting human preference is a
challenging task.

Human-in-the-loop optimization is an effective approach to han-
dling human preference in computational design systems. In this
approach, the computational design system iteratively asks human
evaluators (e.g., the user [7] or crowd workers [8]) to perform some
microtasks while running the optimization process. That is, the
system considers the human evaluators as a processing module
that plays the role of the objective function, in the spirit of human
computation [13]. Another effective approach is to use preference
learning techniques [5, 6] for approximating the preferential objec-
tive function and then let users manually find the optimal solution
with the help of this approximated objective function.

When gathering subjective preferential feedback from human
evaluators, we need to care about how to design queries. In general,
researchers consider relative assessment (e.g., let evaluators choose
the best design from multiple options) to be more suitable than
absolute assessment (e.g., let evaluators provide a score value for a
specific design) [4, 14]. This course will discuss how this considera-
tion has been incorporated into computational design frameworks
by reviewing several representative works.

User’s edit

Automatic
adjustment

Figure 2: Example of computational design for personal fab-
rication [15]. The system assists users in designing free-
form model airplanes that fly well. It automatically adjusts
design parameters to maximize the flyability.

1.3 Examples
Figure 2 shows an example of computational design for personal
fabrication [15], in which a system for designing free-form model
airplanes is presented. To ensure that the airplane can fly well
without letting users perform time-consuming fabricate-and-test
iterations, the system automatically adjusts design parameters (e.g.,
wing positions) by solving an optimization problem, where the “fly-
ability” (i.e., how long and stably the airplane can fly) is considered
the objective function to maximize.

Figure 3 shows an example of human-in-the-loop computational
design for parametric visual design [7], in which the presented
human-in-the-loop optimization method is applied to photo color
enhancement. In this design problem, the user needs to adjust
design parameters (e.g., brightness, contrast, and saturation) such
that the target photograph looks subjectively best. The system finds
the optimal parameter set by iteratively asking the user to perform
a simple assessment task (clicking the best option among some
options in this case).

2 BENEFITS
This course aims to let students and researchers who are novices to
computational design become ready to start research on this topic.
Specifically, this course tries to offer the following benefits to the
audience:

• Understanding of fundamental concepts in computational
design and an overview of this topic.

• Understanding of how researchers have formulated design
problems as optimization in various application domains.

• Understanding of common considerations when human eval-
uation is involved in optimization problems.

3 INTENDED AUDIENCES
Anyonewith interest in computational design can attend this course.
Students, researchers, and practitioners who are novices to this
topic are especially welcomed.

4 PREREQUISITES
This course is self-contained, and no particular prerequisite knowl-
edge is required. This course will involve some basic concepts of
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Figure 3: Example of human-in-the-loop computational design for parametric visual design [7]. The system optimizes the
target design parameters by iteratively asking the user to perform a simple task to find the best design.

Table 1: Course content.

Content Duration

Part 1: What is Computational Design? 45 minutes
Part 2: Human in the Loop 25 minutes
Part 3: Summary 5 minutes

mathematics and coding, but we will explain the necessary concepts
during the course.

5 CONTENT
Table 1 shows the course content, which consists of three parts. In
the first two parts, we will introduce many representative works
from various application domains. This is not intended as a com-
prehensive survey but as material for a better understanding of
computational design, and so we will focus on explaining why and
how each of the works can be considered computational design. The
last part summarizes the course and mentions future challenges.

6 PRACTICAL WORK
This course will be provided in a lecture-style format, but it will
also include a coding demo for a toy design optimization problem.
We plan to allow participants to access the code on web browsers
and run it by themselves later so that they can get a sense of what
coding in computational design is like.

7 INSTRUCTOR BACKGROUND
Yuki Koyama is a Researcher at National Institute of Advanced In-
dustrial Science and Technology (AIST), Japan. He has beenworking
on computational design for years in HCI and graphics domains
and published papers on this topic at important venues such as
CHI, UIST, SIGGRAPH, and SIGGRAPH Asia. His recent interest is
to apply computational techniques for formulating and supporting
design processes that involve preferential assessment by human; for
example, he has worked on supporting parametric visual designs
using crowdsourcing, machine learning, and Bayesian methods [5–
8]. He is also interested in solving computational design problems
in the personal fabrication domain [3, 15]. He received his Ph.D.
from the University of Tokyo in 2017.

8 RESOURCES
Details of the coursewill be published at https://koyama.xyz/courses/
chi2021-computational-design/. Learning materials for the course
will be made available before the CHI conference. Some of the
course topics are also discussed in details in the book chapter [4]
written by the instructor and his colleague.
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