
Supplemental Document
Sequential Line Search for Efficient Visual Design Optimization by Crowds

YUKI KOYAMA, ISSEI SATO, DAISUKE SAKAMOTO, and TAKEO IGARASHI, The University of Tokyo

This supplemental document provides the details of equations and our im-
plementation for reproducibility. Also, we include additional discussions
and figures that are useful for better understanding of our method.

1 BAYESIAN OPTIMIZATION: FUNDAMENTALS AND
OUR IMPLEMENTATION

We have briefly introduced an overview of standard Bayesian op-
timization techniques in our main paper. Here, we provide more
details of them. Note that readers can also find general and com-
prehensive introductions in [Brochu et al. 2010b; Shahriari et al.
2016].

1.1 Overview
Suppose that A is a d-dimensional bounded space, f : A → R is
an unknown black-box function, and we want to find its maximum:

x∗ = argmax
x∈A

f (x). (1)

Suppose as well that the function value f (x) can be computed for an
arbitrary point x, but f (·) is an expensive-to-evaluate function, i.e., it
entails a significant computational cost to evaluate the function
value. Thus, while there are many optimization algorithms that can
be used for solving this maximization problem (e.g., the DIRECT
algorithm [Jones et al. 1993]), here we are especially interested in
making the number of necessary function evaluations as small as
possible.

Suppose that we currently have a set of t function-value observa-
tions:

Dt = {(xi , fi )}ti=1, (2)

where fi = f (xi ). Intuitively, for each iteration in Bayesian opti-
mization, the next evaluation point xt+1 is determined such that
it is “the one most worth observing” based on the previous data
Dt . Suppose that a : A → R is a function that quantifies the “wor-
thiness” of the next sampling candidate. We call this function an
acquisition function. For each iteration, the system computes the
maximization of the acquisition function to determine the most
effective next sampling point:

xt+1 = argmax
x∈A

a(x;Dt ). (3)

The following subsections explain how to model and calculate
such an acquisition function. Before introducing the detailed equa-
tions of the acquisition function, we begin with a prior assumption
put on the objective function, based on which the acquisition func-
tion is calculated.

1.2 Gaussian Process Prior
In Bayesian optimization, the Gaussian process (GP) prior is often
assumed on f (·). According to [Ebden 2015], a GP is described as
follows:

“Formally, a Gaussian process generates data lo-
cated throughout some domain such that any finite
subset of the range follows a multivariate Gaussian
distribution.”

This is expressed as

f (x) ∼ GP (m(x),k (x, x′)), (4)

wherem : A → R is the mean function and k : A ×A → R+ is the
covariance function of the GP.When prior knowledges about f (·) are
available,m(·) can be set to reflect those knowledges (e.g., [Brochu
et al. 2010a]). In this paper, as we do not assume any domain-specific
prior knowledge, we simply set

m(x) = 0. (5)

For the covariance function representation, we use the automatic rel-
evance determination (ARD) squared exponential kernel [Rasmussen
and Williams 2006]:

k (x, x′) = θd+1 exp
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
−
1
2

d∑
i=1

(xi − x
′
i )
2

θ2i



+ θd+2δ (x, x

′), (6)

where θ = {θi }d+2i=1 are the model hyperparameters that should be
determined somehow, which will be discussed later, and δ (·, ·) is
the Kronecker-Delta function.

Since any data should follow a multivariate Gaussian distribution
under the GP prior, an unobserved function value f (x∗) on an
arbitrary parameter set x∗ is considered to follow the distribution:

[
f

f (x∗)

]
∼ N

(
0,
[
K k
kT k (x∗, x∗)

])
, (7)

where

f =
[
f1 · · · fN

]T
, (8)

k =
[
k (x∗, x1) · · · k (x∗, xN )

]T
, (9)

K =



k (x1, x1) · · · k (x1, xN )
...

. . .
...

k (xN , x1) · · · k (xN , xN )



. (10)

Using some matrix algebra, we can derive

f (x∗) ∼ N
(
kTK−1f ,k (x∗, x∗) − kTK−1k

)
. (11)

This equation provides a predictive distribution about the unob-
served function value, which follows a simple Gaussian distribution.
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We represent µ (·) and σ 2 (·) are the predicted mean and the variance,
respectively, i.e.,

µ (x∗) = kTK−1f , (12)

σ 2 (x∗) = k (x∗, x∗) − kTK−1k. (13)

Note that we can use this predictive distribution as a means of
scattered data interpolation, although our goal is not interpolation.
This usage is referred to as Gaussian process regression (GPR). See
the tutorial by Ebden [2015] for this direction.

1.3 Covariance Hyperparameters
To predict µ (·) and σ 2 (·), the model hyperparameters θ have to be
determined. Here, we consider to determine them using maximum
a posteriori (MAP) estimation, while other options (e.g., maximum
likelihood estimation) are also possible. Given the dataD, the model
hyperparameters are determined by maximizing the posteriori dis-
tribution of θ :

θMAP = argmax
θ

p (θ | D). (14)

By applying Bayes’ theorem, we have

θMAP = argmax
θ

{
p (D | θ )p (θ )

p (D)

}
= argmax

θ
p (D | θ )p (θ ). (15)

From the definition of the GP prior, the conditional probability
p (D | θ ) follows

p (D | θ ) = N (f ; 0,K). (16)

The probability p (θ ) is an arbitrary prior distribution of θ . In this
study, we assume log-normal distributions for each hyperparameter:

p (θi ) =



LN (ln 0.500, 0.10) (i = 1, . . . ,d + 1)
LN (ln 0.005, 0.10) (i = d + 2)

. (17)

Thus, we have

p (θ ) =
d+2∏
i=1

p (θi ). (18)

As the gradient of the objective function in Equation 15 can be
expressed in closed form (see [Rasmussen and Williams 2006]),
this maximization can be efficiently performed by using standard
gradient-based optimization techniques, e.g., L-BFGS [Liu and No-
cedal 1989].

1.4 Acquisition Function
So far, we have discussed computational tools for predicting unob-
served function values. By using them, the next sampling point is
chosen. Intuitively, we want to choose the next sampling point so
that it is likely to have a larger value (since we want to find the
maximum) and at the same time its evaluation is more informa-
tive (e.g., visiting a point that is very close to already visited points
should be less useful). To realize such properties, researchers have
proposed several types of acquisition function for choosing the next
sampling point, including

• probability of improvement (PI),

• expected improvement (EI), and
• Gaussian process upper confidence bound (GP-UCB).

See [Shahriari et al. 2016] for detailed discussions. Among them, we
adopt the EI criterion [Jones et al. 1998; Mockus 1974], following
the previous works [Brochu et al. 2010a, 2007].

Let f + be the maximum value among the currently observed data.
The acquisition function based on EI is defined as

aEI (x;D) = Ef [max{ f (x) − f +, 0}], (19)

where f (·) is considered as a probabilistic variable that depends on
the dataD. After some integral calculations, this can be analytically
expressed in closed form as

aEI (x;D) = ( f + − µ (x))Φ(γ (x)) + σ (x)N (γ (x); 0, 1), (20)

whereγ (x) = ( f +−µ (x))/σ (x), µ (·) and σ (·) are the ones calculated
in Equation 12 and Equation 13 using the MAP-estimated model
hyperparameters θMAP, and Φ(·) is the cumulative distribution func-
tion of the standard normal. Since aEI (·) can have multiple local
maximums, we use the DIRECT algorithm [Jones et al. 1993], which
is a global optimization algorithm, to solve the maximization of this
acquisition function.

1.5 Example Optimization Sequences
Figure 1 shows example sequences of applying Bayesian optimiza-
tion to one-dimensional test functions. Intuitively, the next sampling
point xnext is selected such that both µ (xnext) and σ (xnext) are large.
Note that we do not intend that µ (·) eventually converges to f (·)
because this is not a regression but an optimization. For example,
some regions remain uncertain (i.e., having large σ (·) values) but
are not sampled even after several iterations; this is because they are
unlikely to contain the maximum. On the other hand, x+ is expected
to converge to the maximum.

2 BAYESIAN OPTIMIZATION BASED ON LINE SEARCH
ORACLE

2.1 Example Optimization Sequence
Figure 2 shows an example sequence (that is longer than the figure
in the main paper) of optimizing a 2-dimensional test function using
our Bayesian optimization based on line search oracle. It shows
that we could obtain a good solution after 4 or 5 iterations in this
example.

2.2 Discussions on Hyperparameters
We derive the model hyperparameters θ using maximum a poste-
rior (MAP) estimation. Brochu et al. [2007] used expert set hyper-
parameters; they manually tuned the hyperparameters and fixed
them during optimization sequences. Later, Brochu et al. [2010a]
introduced a new strategy for setting the hyperparamters by using
particle filter; however, it requires prior data. Snoek et al. [2012]
introduced a fully-Bayesian approach for computing the acquisition
function; their method integrates the acquisition function over all
the possible hyperparameters. We implemented the MAP, expert set,
and fully-Bayesian approaches, and compared in several synthetic
settings. We found that the MAP approach works better on the
whole, so that we chose it.

Yuki Koyama
Sticky Note
We have noticed the equation is not correct. Please read this part by replacing every $f^{+} - \mu(\mathbf{x})$ with $\mu(\mathbf{x}) - f^{+}$.
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Uncertainty

Fig. 1. Example sequences of Bayesian optimization, applied to one-dimensional test functions. Optimization proceeds from top to bottom. The
gray dotted line indicates the unknown black-box function f ( ·), the red line indicates the predicted mean function µ ( ·), the blue line indicates the acquisition
function a ( ·), the pink region indicates the 95% confidence interval (i.e., [µ ( ·) − 1.96σ ( ·), µ ( ·) + 1.96σ ( ·)]), and the dots indicate the observed data (the red
one is the maximum at each moment). Note that a ( ·) is scaled for visualization purpose.
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Fig. 2. An example sequence of the Bayesian optimization based on line search oracle, applied to a two-dimensional test function. The iteration
proceeds from left to right. From top to bottom, each row visualizes the black-box function д ( ·) along with the slider space S and the chosen parameter set
xchosen, the predicted mean function µ ( ·), the predicted standard deviation σ ( ·), and the acquisition function a ( ·), respectively. The red dots denote the best
parameter sets x+ among the observed data points at each step.
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