Real-Time Example-Based Elastic Deformation

Y. Koyama1, K. Takayama1,2, N. Umetani1, T. Igarashi1,3

1The University of Tokyo \hspace{1cm} 2ETH Zurich \hspace{1cm} 3JST ERATO
Example-Based Elastic Materials
[Martin11]

Our method

Shape Matching
[Müller05]

Finite Element Method

Speed up

Use
Example-Based Elastic Materials [Martin11]

Our method

Shape Matching [Müller05]

Finite Element Method (FEM)

Speed up
Example-Based Elastic Materials

[Martin11]

Rest shape + Example pose → Result of simulation
Advantages

1. Artist-friendly simulation
 – Direct design of deformations

2. No pre-defined scenarios
 – Useful for games...?
Limitation of [Martin11]

- **Slow**
 - not real-time, not interactive
 - Finite Element Method (FEM)
 - Non-linear optimizations

Our motivation: real-time, interactive
Real-Time Demo

Rest shape + Example pose
Example-Based Elastic Materials [Martin11]

Our method

Speed up

Finite Element Method

Shape Matching [Müller05]
Shape Matching [Müller05]

- Method for deformable objects
 - Geometry, not physics
 - Fast, robust, and stable
Key ideas

Rest shape \rightarrow A = RS \rightarrow Current shape

\(A \in \mathbb{R}^{3\times3} \)
- Linear transformation

\(R \in \mathbb{R}^{3\times3} \)
- Rotation

\(S \in \mathbb{R}^{3\times3} \)
- Stretch and shear

Polar decomposition
Extension to multi-region

- Overlapping local regions
 - Increasing the range of deformation
Deformation Descriptor

\[A_1 = R_1 S_1 \]
\[A_2 = R_2 S_2 \]
\[A_3 = R_3 S_3 \]

\[S = \left(S_1^T \quad S_2^T \quad \cdots \quad S_m^T \right)^T \in \mathbb{R}^{6m} \]
Goal pose
(Standard shape matching)
Goal pose
(Our method)

Rest pose

Current pose

Goal pose

Example Pose
Details of projection

1. Linear projection

\[w_0 S^0 + w_1 S^1 \]
Details of projection

2. Clamping to avoid extrapolation

Constraints: $0 \leq w_i \leq 1$
Details of projection

3. Ensuring the deformation will return
Modifying the Shape Matching

\[\tilde{S} = \left(\tilde{S}_1^T \tilde{S}_2^T \cdots \tilde{S}_m^T \right)^T \]

Goal strain of each local region

Region \(i \)

\[R_i \tilde{S}_i \]
Non-linear vs Linear

[Martin11] FEM

Our Method
Shape Matching
Results and Discussions
Results
Rough comparison

1. Quality

- Very similar effect of example pose

<table>
<thead>
<tr>
<th>[Martin11]</th>
<th>Our Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rough comparison

2. Performance

- Two, or three orders magnitude faster

<table>
<thead>
<tr>
<th></th>
<th>[Martin11]</th>
<th>Our Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>325</td>
<td>225</td>
</tr>
<tr>
<td>Time [ms]</td>
<td>528 / 3064</td>
<td>0.33</td>
</tr>
</tbody>
</table>

(twisting cuboid)
Limitation

• Physical accuracy
 [Good] FEM
 [Poor] Shape Matching
Future Work

2D structures (e.g. cloth) 1D structures (e.g. hair)

[Müller11]
Summary

- New method for example-based materials
 - Based on shape matching technique
 - Real-time, interactive
 - Decreased physical accuracy
Case of two examples
(manifold should be a plane)
Local Examples

- Separate groups
- Manipulated independently
Comparison

Martin et al.

Our method
Shape Matching

Model = A set of particles

Rest configuration
Shape Matching

Rest configuration

Current configuration
Shape Matching

Goal configuration
Shape Matching

Goal configuration

Rigid transformation
(Translation + Rotation)
Shape Matching

Rigid transformation
(Translation + Rotation)

Pull towards the goal positions