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ABSTRACT

Tweaking parameter settings is one of the most fundamental tasks in many design
domains, including 2-dimensional graphic design and 3-dimensional product design. The
purpose of such parameter tweaking tasks is to maximize the quality of designed objects
based on some criteria. Especially in visual design domains, aesthetic preference, i.e.,
how aesthetically preferable the designed object looks, is often used as the criterion.
For example, in photo color enhancement, a designer tweaks several parameters such as
“brightness” or “contrast”, to make the color of the target photograph aesthetically best.
However, aesthetic preference is tied with human perception, and thus it is difficult to
mathematically quantify this criterion using simple rules or equations.

In this thesis, we seek computational design support methods for parameter tweaking
tasks in which aesthetic preference is used as a criterion. First, we investigate meth-
ods for estimating a preference distribution in the target design space using computa-
tional techniques. The estimated preference distribution can be then used for facilitat-
ing manual design exploration. Second, we investigate methods for directly finding the
best parameter set from the target design space using computational techniques. These
two approaches collect necessary data about human preference exploiting two difference
sources: crowdsourced human computation and editing history. Crowdsourced human
computation techniques provide “general” preference data generated by a large number
of undefined crowds in an on-demand manner, while editing history of a single target
user provides “personal” preference data of the user.

Specifically, we propose the following three computational design methods.

1. The first method estimates a preference distribution in the target design space
using crowdsourced human computation. The estimated preference distribution is
then used in a novel design interface to facilitate manual design exploration.

2. The second method also estimates a preference distribution and uses it for facil-
itating manual exploration, but the estimation is based on the editing history of
the target user. Along with this history-based preference estimation technique, we
also propose a workflow to effectively gather and utilize the user’s editing history
in practical scenarios.

3. The third method directly searches the target design space for the best parameter
set that maximizes aesthetic preference, without requiring the user of this method
to manually tweak parameters. This is enabled by constructing an optimization
framework using crowdsourced human computation.

We evaluated these three methods mainly in the scenario of photo color enhancement,
but we also demonstrate applications to other various design domains, including lighting
design for 3-dimensional computer graphics and facial expression modeling of a virtual
avatar. The results showed that every proposed method was able to computationally
handle either general or personal aesthetic preference, and worked in meaningful ways
to support design activities. We envision that these methods and the lessons learned
through this study will become fundamentals of future research on computational design
methods for more complex design scenarios beyond parameter tweaking.
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Chapter 1

Introduction

1.1 Motivation

Quality of designed objects could be assessed using various criteria according to
their usage contexts. Especially in visual design domains, aesthetic preference—
how aesthetically preferable the design looks—is an important criterion. For
example, photo color enhancement (also referred to as tonal adjustment, color
grading, or color correction) is one of such design scenarios where aesthetic pref-
erence performs the role of a criterion based on which the quality is determined
(see Figure 1.1). When a designer enhances the color of a photograph, he or she
has to tweak multiple design parameters such as “brightness” or “contrast” via
a slider interface to find the most aesthetically preferable enhancement for the
target photograph.

In general, finding the best parameter combination is not an easy task. It
may be easily found by a few mouse drags in case that the designer is very

A “bad” A ““good” A “bad”
visual appearance

visual appearance
. Y
W7 L N‘ ‘x",:

Brightness \ //
X

Contrast Adjust sliders to

find the “best”

S visual appearance

Figure 1.1: An example of design parameter tweaking where aesthetic prefer-
ence is used as a criterion. Photo color enhancement is one of such design scenarios,
in which designers tweak sliders such as “brightness” so that they eventually find the
parameter set that provides the best preferable photo enhancement.
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Figure 1.2: Example scenarios of parameter tweaking for visual design, in-
cluding photo color enhancement, image effects for 3D graphics, and 2D graphic designs
such as web pages, presentation slide, etc.

familiar with how each parameter affects the visual content and is very good
at predicting the effects without actually manipulating sliders. However, this is
unrealistic in most practical cases; several sliders mutually affect the resulting
visuals in complex ways, and also each slider affects differently when contents
are different, which make the prediction very difficult. Thus, in practice, it is
inevitable that a designer explores the design space—the set of all the possible
design alternatives—in a trials-and-errors manner, to find the parameter set that
he or she believes the best for the target content. This requires many slider
manipulations, as well as the designer to construct a mental model of the design
space. Furthermore, as the number of design parameters increases, the design
space expands exponentially, which makes this exploration very tedious. In the
example of photo color enhancement, there are eleven “basic” sliders in Adobe
Photoshop Lightroom CC [10] that need to be tweaked, which is already time-
consuming to explore all the possibilities.

Though difficult, parameter tweaking is very common task, and similar situa-
tions can be observed in many design scenarios. Figure 1.2 illustrates example
scenarios of such parameter tweaking where parameters are tweaked so that the
visual content is aesthetically the best. For example, in Unity (a computer game
authoring tool) [150] and Maya (a 3-dimensional computer animation authoring
tool) [16], there are many sliders in the control panes, which need to be tweaked
to adjust the visual of contents. In this thesis, we aim to support (or possibly
automate) this general design task of preference-based parameter tweaking.

1.2 Problem Formulation

In this thesis, we investigate computational design support methods for facil-
itating design exploration in which aesthetic preference is used as a criterion.
Specifically, we consider the design exploration where multiple design parameters
have to be tweaked such that the aesthetic preference criterion is maximized. This
can be mathematically described as follows. Suppose that there are n real-valued
design variables

x:[xl x| €4, (1.1)
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Unknown goodness function g(x)

»

Design space X

Aesthetic preference

>
>

Design variables x

Unknown optimal solution x*

Figure 1.3: Our problem setting. We seek computational design methods to solve
the optimization problem described in Equation 1.3, or to find the optimal solution x*
that maximizes the aesthetic preference of the target design.

where X represents an n-dimensional design space. We assume that
X =10,1]" (1.2)

for simplicity, 7.e., each variable takes a continuous value and its interval is reg-
ularized into [0, 1] in advance. In case that a variable is tweaked by a slider,
we suppose that the slider’s lowest and highest values correspond to 0 and 1,
respectively. Using these notations, a parameter tweaking task is described as an
optimization problem:

x" = arg max g¢(x), (1.3)

xeEX

where the objective function g : X — R, which we call goodness function, returns
a scalar value representing how aesthetically preferable the design correspond-
ing to the argument design variables is. A designer usually tries to solve this
optimization problem by exploring X manipulating sliders in a trials-and-errors
way without any computational support. This exploration ends when the de-
signer believes that he or she finds the optimal argument value x* that gives the
best preferable design. Figure 1.3 illustrates this problem setting. Our goal is
to seek methods for solving this optimization problem either automatically or
semi-automatically using computational tools.

1.2.1 Challenges

Compared to typical optimization problems in computer science and engineer-
ing, the optimization problem that we are going to solve has several irregular
features. The objective function g(-) is constructed based on human perception,
and exists only in brains of designers. Thus, it is generally difficult to represent
g(+) as a simple equation that can be calculated using machine processors alone,
meaning that it is inevitable to somehow involve humans. Furthermore, even a
designer themself cannot answer the goodness value for a design before explor-
ing and learning the entire design space. This means that we cannot directly
use “function-value” queries like typical optimization settings. Although some
previous works in machine learning and computer graphics communities (e.g.,
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[41, 33, 139]) have tackled problems similar to ours, this direction has not been
investigated sufficiently yet, and there remains many possibilities to be investi-
gated especially from the viewpoint of human-computer interaction.

1.2.2 Assumptions and Scope

As there are a variety of possible design scenarios, we put several assumptions
on this problem setting to clarify our scope. First, we assume that the target pa-
rameters are continuous, and thus discrete ones, e.g., font type selection, are out
of the scope. We also assume that, when a design parameter changes smoothly,
the corresponding visual also changes smoothly; we do not handle discontinuous
changes, e.g., line breaking in text-box size adjustment. From these assumptions,
the goodness function g(-) is considered a continuous, smooth function. Note that
the goodness function is allowed to have multiple local maximums, ridges, or lo-
cally flat regions around maximums. Also, we assume that the goodness function
is constant with respective to time. The design space is expected to be parame-
terized by a reasonable number of parameters as in most commercial softwares;
parametrization itself is out of our scope. We handle the design domains where
even novices can assess relative goodness of designs (for example, given two de-
signs, they are expected to be able to answer which design looks better given
two designs); but importantly, they do not need to know how a design can be
improved.

Though we narrow down the target problem as discussed above, it still covers
a wide range of practical design scenarios: photo color enhancement, material
design by editing the bidirectional reflectance distribution function (BRDF), fa-
cial expression modeling via blendshape, 2-dimensional graphic design such as
posters, procedural texture and modeling, post-rendering image effect, etc.. In
this thesis, we use photo color enhancement as the main example to validate our
methods.

1.3 Our Approach

To provide computational methods for solving the design problem described as
Equation 1.3, we investigate two approaches with respect to the usages of com-
putational tools:

Estimation of ¢(-): The first approach is to estimate the shape of the goodness
function g(+) by using computational tools. In other words, it is to compute
regression of g(-). Once g(+) is estimated, it can be used for “guided” explo-
ration: supporting users’ free exploration of the design space X for finding
their best favorite parameter set x* through some user interfaces. One of
the advantages of this approach is that, even if the estimation is rough or
its quality is not perfect, it can still be effective for supporting users to find
x*. To implement this approach, there are several challenges: how to com-
pute this unusual regression problem (in which the algorithm cannot query
function values directly), and how to support the users’ manual exploration
using the estimated g(+).

Maximization of g(-): The second approach is to compute maximization of the
goodness function g(-) by using computational optimization tools so that
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the system can directly find the optimal solution x*. That is, the system
searches the design space X for the maximum of g(-) automatically. While
the first approach equally handles the entire design space X everywhere,
this approach focuses on only maximums and exploring paths for finding
them. Thus, while it is also possible to estimate x* by using the estimated
g(+) by the first approach, the computational cost is expected to be less
in this approach, especially when the dimension of X is high. The found
solution x* can be used as either a final design or a starting point that will
be further refined by the user. Implementing this approach requires several
non-trivial considerations, e.g., which optimization algorithm can be used,
and how it should be adapted for our special problem setting.

For both the approaches, human-generated preference data is necessary for
enabling computation. In this thesis, we investigate the following two sources to
obtain such data.

Crowdsourced human computation: First, we investigate the use of human
computation to generate necessary preference data. As we will review in
Section 2.4, human computation is a paradigm where humans are explicitly
considered as processing power and integrated within systems. Such human
processors can be obtained via crowdsourcing. By this approach, systems
can obtain crowd-generated data on demand as function calls. Here we
put an additional assumption: there exists a common “general” preference
shared among crowds; though there might be small individual variation, we
can observe such a general preference by involving many crowds.

Editing history: Second, we investigate the use of editing history of a single
user as the preference data source. While crowdsourced human compu-
tation handles “general” preference, this approach can handle “personal”
preference of the target user. However, as the editing history cannot be gen-
erated on demand, some appropriate workflow may be necessary so that the
system implicitly gathers available data and effectively utilizes them.

Based on the above discussions, in this thesis, we propose the following three
specific methods.

Crowd-powered parameter preference estimation. This method estimates
the goodness function g(-) using crowdsourced human computation. Specif-
ically, we present a computational technique to infer g(-) from pairwise-
comparison data generated by crowds. Along with this technique, we also
propose a new slider interface called VisOpt Slider that facilitates users’
interactive design exploration using the estimated g(-).

History-based parameter preference estimation. This method also estima-
tes the goodness function g(-), but from personal editing history of a target
user. As the data form is different, we propose a different computational
techniques for estimating g(-). We also present a new workflow for effec-
tively gathering and utilizing editing history. Our prototype system, named
SelPh, supports users’ manual design exploration through several interface
functions including an extended version of VisOpt Slider. In this method,
we especially focus on photo color enhancement application to validate the
effectiveness of this method in professional scenarios.
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Table 1.1: Overview of the three methods presented in this thesis. In the first
and the second methods, we utilize computational techniques for estimating the goodness
function g(+), while, in the third method, we do for directly searching the design space X
for the optimal parameter set x*. As the data sources for computation, we seek to use
crowdsourced human computation in the first and third methods, and editing history in
the second method.

Crowd-powered
maximization
(Chapter 5)

Crowd-powered
estimation
(Chapter 3)

History-based
estimation
(Chapter 4)

Design space X Design space X Design space X

; j

i |

x*

Estimation of g(-)

z;

Estimation of g(-) Maximization of g(-)

Data Data Data
COOOOOOO COOOOOOO
COOOOOOO COOOOOOO
COOOOOOO COOOOOOOO

Editing history

Human computation Human computation

Crowd-powered parameter preference maximization. Instead of estimat-
ing the goodness function g(-), this method directly explores the design
space X and tries to find the maximum x*, by computing optimization pro-
cess using crowdsourced human computation. We call this new paradigm
as crowd-powered visual design optimization. While existing related meth-
ods use pairwise-comparison queries for crowdsourcing, we propose a novel
query design which requires less iterations for finding x*, meaning that less
computational cost is required.

Table 1.1 provides an overview of these three methods.

1.4 Organization of the Thesis

First, we review the related research areas in computer graphics and human-
computer interaction in Chapter 2, and clarify the position of our overall attempt
and each contribution. At the same time, we also try to clarify terminologies used
in this thesis.

In Chapter 3, we describe the crowd-powered estimation method in detail and
demonstrate its potential by applying it to four different design scenarios. The
contributions presented in this chapter has been published as Crowd-Powered
Parameter Analysis for Visual Design Exploration [75] at the 27th Annual ACM
Symposium on User Interface Software and Technology (UIST ’14) in Honolulu,
USA. This work was conducted in collaboration with Daisuke Sakamoto and
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Takeo Igarashi from the University of Tokyo.

In Chapter 4, we describe the history-based estimation method in detail and
validate its effectiveness in professional photo color enhancement scenarios through
a user study with eight expert designers. The contributions presented in this
chapter has been published as SelPh: Progressive Learning and Support of Man-
ual Photo Color Enhancement [76] at the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16) in San Jose, USA. This work was conducted in
collaboration with Daisuke Sakamoto and Takeo Igarashi from the University of
Tokyo.

In Chapter 5, we describe the crowd-powered maximization method in detail,
demonstrate several usage scenarios, and evaluate its efficiency by comparing ex-
isting approaches. The contributions presented in this chapter is currently under
review as a paper entitled Sequential Line Search for Visual Design Optimiza-
tion by Crowds [77]. This work was conducted in collaboration with Issei Sato,
Daisuke Sakamoto, and Takeo Igarashi from the University of Tokyo.

Finally, we summarize our contributions and the lessens learned from our in-
vestigation in Chapter 6. We then revisit the assumptions made in this thesis,
and discuss the limitations and the future directions.



Chapter 2

Related Work

Our problem setting described in Chapter 1 is general and can be observed in
many design scenarios. However, the same problem setting has not been inves-
tigated very intensively; there are only several previous projects (e.g., [33, 139]),
which we will discuss in details in the latter chapters. In this chapter, rather
than describing specific technical differences from previous work, we aim at clar-
ifying the position of our overall investigation by reviewing several sub-fields in
computer graphics and human-computer interaction that are partially overlapped
with our attempt, with respect to target contexts and techniques.

2.1 Computational Design

In this thesis, we use the term, computational design, as the emerging form of
design activities that are enabled by computational techniques. In this concept,
design activities are often formulated as mathematical optimization problems; de-
sign criteria perform the roles of either objective functions or constraints, design
space is considered as the search space (or the choice set), and design explo-
ration, which can be performed by either systems, users, or their combination,
is considered as the process of searching for solutions. This viewpoint provides
an opportunity to devise new ways of utilizing computational techniques (i.e.,
mathematical tools developed in computer science that can bring out machine
processing power). The main goal of researches on computational design is to
enable efficient design workflow or complex design outcomes that are impossible
in traditional approaches relying heavily on human thinking capacity.

Computer-aided design (CAD) is a related concept in which computational
tools, such as geometric techniques (e.g., [63]) and physical simulation (e.g.,
[148]), may be utilized to increase the productivity of designers. We consider
that computational design and CAD are partially overlapped; however, CAD is
designed mainly for accelerating traditional design activities, and not necessarily
being formulated as optimization.

Designed objects are assessed using various criteria depending on usage con-
texts. Some criteria might work as conditions that should be at least satisfied
(i.e., constraints); other criteria might work as values that is desired to be max-
imized (i.e., objectives). We classify these design criteria into two groups: func-
tional criteria and aesthetic criteria. Functional criteria are the criteria about how
well the designed object serves in the expected contexts. For example, a chair is
expected to be “durable” when someone is setting on it; in this case, durability
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Figure 2.1: An example of computational design driven by functional criteria.
In this example from [78], to design a 3D-printable functional “pipe clamp” that can hold
objects rigidly, the grip strength is considered to be a user-specified constraint, and the
material consumption is considered to be an objective function to be minimized. The
system solves such a constrained optimization problem and provides the optimal design
parameters (in this case, design parameters consist of closeness, thickness, and width of
the pipe clamp).
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can be a functional criterion that should be satisfied. On the other hand, aes-
thetic criteria are the criteria about how perceptually pleasing (or preferable) the
designed object looks. A chair might look “more beautiful”, for example, if its
shape is smooth and the width and height follow the golden ratio rule; in this
case, beauty in shape performs the role of an aesthetic criterion that is desired
to be maximized. Note that these two criteria are orthogonal; in practical design
scenarios, these two criteria may be simultaneously considered by designers. In
the following subsections, we review existing computational design methods for
each type of design criteria.

2.1.1 Functional Criteria

Recently, many computational design methods for designing functional objects
have been intensively investigated, especially for digital fabrication applications.
So far, a variety of functional criteria have been handled and formulated by
researchers; Umetani et al. [149] formulated the functional criterion of paper
airplane designs, i.e., fly-ability, and used it for optimizing airplane designs by
maximizing the fly-ability criterion. Their followers extended the fly-ability for-
mulation for kites [98] and bamboo-copters [103]. Koyama et al. [78] formulated
hold-ability and grip strength of 3D-printed connectors and then presented an
automatic method named AutoConnect (see Figure 2.1) for designing functional
connectors. Several computational design methods consider functionalities about
objects’ mass properties, e.g., standing stability [115, 164], spinning stability,
[18, 103] and floating stability [156]. Structural strength of objects is also an
important factor, and researchers have developed computational design methods
taking this criterion into consideration [134, 93, 99].

Another notable domain of computational functional design is automatic graph-
ical user interface (GUI) generation. For example, Gajos et al. [52] presented an
automatic GUI design method, in which they formulated required user efforts for
manipulating GUI elements as the objective function to be minimized. Laursen
et al. [82] presented a method of choosing an optimal set of icons for GUI taking
icons’ identifiability and comprehensibility into consideration.
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2.1.2 Aesthetic Criteria

Computational design using aesthetic criteria is achieved by not only predicting
(as discussed in Section 2.2) but also maximizing perceptual aesthetic quality.
Compared to functionalities of things, aesthetic preference is closely tied to hu-
man perception and thus it is more difficult to quantify using simple rules. Yet,
by focusing on very specific design domains, it is possible to handle and optimize
aesthetic criteria by rule-based approaches. For example, Liu et al. [90] presented
a computational photo cropping method, where they consider several heuristic
rules (or guidelines) for aesthetically pleasing photo composition such as rule of
thirds and wvisual balance, in the objective function. In general, rule-based ap-
proaches require careful implementation of heuristic rules and manual tuning of
models parameters for rules.

Data-driven approaches can ease the limitations in rule-based approaches. Most
of data-driven methods yet rely on heuristic rules, but can derive optimal weights
or model parameters for the rules by learning them from training data. For exam-
ple, O’Donovan et al. [109, 110] presented a data-driven method of predicting and
optimizing aesthetic quality of layouts of 2-dimensional graphic designs. Their
aesthetic criterion is formulated by combining several heuristic rules, e.g., align-
ment and white space, and machine learning techniques are used to learn the
weights and the model parameters. Other examples handle color palette aes-
thetics [108, 73], 3D viewpoint preference [124], and photo color enhancement
[35].

In this thesis, we focus on general parameter tweaking tasks, and investigate as
general methods as possible. Thus, we decide not to rely on domain-specific rules
or database. In this sense, Talton et al.” method [139] is similar to ours. Their
method constructs a so-called collaborative design space, which is a subset of the
target design parameter space consisting of only aesthetically acceptable designs,
based on the design history of many volunteer users. Then, the collaborative
design space supports new users’ design exploration. While their method takes
roughly one year to obtain the necessary design history and needs many volunteers
to engage exactly the same design space, our methods are designed to obtain
necessary data on demand (the crowd-powered methods) or during a repetitive
design session (the history-based method).

2.2 Computational Perceptual Models

Techniques for quantifying aesthetic preference have been investigated in various
design domains. This attempt is sometimes referred as computational aesthet-
ics, and some of the aesthetic preference models are used for building compu-
tational design frameworks as we discussed in Subsection 2.1.2. For example,
Secord et al. [124] showed how the aesthetic preference of viewing direction for
3-dimensional models can be computationally assessed (Figure 2.2 (Top left)).
Automatic assessment of photograph quality has been intensively investigated
by many researchers [48, 72, 95, 96, 107]. Most of these methods are based
on domain-specific knowledge or heuristic techniques; usually, a visual content
that will be assessed is translated as a domain-specific feature vector, and then
converted to a scalar value that represents its goodness in terms of aesthetics.
Our methods also deal with aesthetic preference, but basically do not heavily

10
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Figure 2.2: Examples of computational perceptual models. (Top left) Predicted
viewpoint preferences [124]. (Bottom left) 3D shape editing using semantic sliders [167].
(Right) A 2D visualization of distance metric for illustration style [54], learned based on
human perception.

rely on domain-specific formulations, which allows our methods to be applicable
to various domains. Also, our methods estimate aesthetic preference on design
parameter spaces, rather than on feature spaces.

Another popular domain of computational perceptual models are modeling
semantic attributes of visual contents. By transforming original design spaces into
semantic design spaces, researchers have provided various tools for intuitive design
exploration. For example, Yumer et al. [167] proposed a 3-dimensional shape
editing tool that has semantic sliders such as “compact”, “comfortable”, and
“fashionable”, and users can explore possible deformations of the target shape by
manipulating the sliders (Figure 2.2 (Bottom left)). Similarly, semantics of fonts
[111], discrete design components [39], BRDFs [125], and human body shapes
[135] are analyzed for supporting design exploration. Our goal is to support
users to find aesthetically best designs, so that building semantic design spaces
is out of our scope.

Modeling perceptual distance (or dissimilarity) metrics is also an active re-
search domain. Measuring distances between visual contents in raw feature
spaces might be perceived non-uniform. For example, {>-norm between colors
in the RGB space is known to be perceptually non-uniform; to measure per-
ceptual distance between colors, several metrics, e.g., CIEDE2000 [129], have
been proposed. Recently, researchers have utilized machine learning techniques
(see [80] for technical details) to computationally model perceptual distances in
various design domains, e.g., fonts [111], illustration style [54], and shape style
[94, 91]. Figure 2.2 (Right) shows an example of illustration style. In Method B,
we learn a perceptual distance metric for photographs, but unlike other methods,
we learn the metric so that it reflects users’ preference and it supports design
exploration.

11
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Figure 2.3: Interfaces for design parameter tweaking. (Left) Side Views [143]
visualizes design previews along with the target slider. (Right) Design Galleries [97]
provides users with design alternatives in a gallery style.

2.3 Parameter Tweaking Interface

One of the most popular interfaces for tweaking parameters is the slider widget,
and it has been widely used for tweaking continuous parameters. Researchers
have augmented slider widgets in several ways. Side Views [143] shows design
previews along with widgets so that users can efficiently learn design alternatives
achieved by the slider adjustment (see Figure 2.3 (Left)). Scented Widgets [159]
embeds useful visual cues directly into widgets for facilitating data exploration.
Parallel Paths [144] and Juztapose [60] allow users to tweak designs in a parallel
manner by simultaneously maintaining several alternatives in design interfaces.
In this thesis, we present a new slider interface called VisOpt Slider, which effec-
tively utilizes the information of the estimated goodness function for facilitating
users’ design exploration. Note that several recent works adopted similar slider
interfaces for support design exploration in different situations [130, 167, 135].

Parameters can be tweaked by approaches other than sliders. Design Gal-
leries [97] is a gallery-based approach for exploring high-dimensional design space,
where the system shows many design alternatives generated by various candidate
parameter sets and users can obtain a good parameter set by simply picking up
the best favorite design (see Figure 2.3 (Right)). Our Smart Suggestion inter-
face proposed with the crowd-powered estimation method (Chapter 3) is inspired
by this approach, and takes the goodness values of design alternatives into ac-
count. Inverse design methods (e.g., [160, 112, 140]) finds the best parameter
set from users’ specifications by solving inverse problems. This approach is effec-
tive when users have very concrete goal visions in advance. In contrast, we deal
with exploratory design scenarios, where the final design goal is formed through
exploration.

2.4 Human Computation and Crowdsourcing

Human computation and crowdsourcing are often used for gathering human-
generated data that is difficult for machine to generate (e.g., perceptual or se-
mantic labels for images). We utilize this approach for formulating our crowd-
powered methods for gathering perceptual preference data. We encourage readers
to refer the comprehensive survey and discussions on these terms by Quinn and
Bederson [116]. In this section, we review these two terms from the viewpoint of
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our attempt.

2.4.1 Human Computation

Human computation is a concept of enabling computations by exploiting humans
as processors. This term was described by von Ahn [152] as below:

“ .. a paradigm for utilizing human processing power to solve problems
that computers cannot yet solve.”

For example, human processors are much better at perceiving semantic mean-
ings of visual contents than machine processors; thus, for building a system that
requires perceptive abilities, it may be effective to incorporate human proces-
sors as well as machine processors. Such problems that are difficult for machine
processors but easy for human processors, including ours, are observed in many
situations. However, human processors also have critical limitations such as that
they are extremely slow and expensive to execute compared to machine proces-
sors. So, it is important to carefully choose where and how to employ such human
processors.

It is possible to design a human computation system so that a user of the
system themself behaves as a human processor. Interactive evolutionary compu-
tation (see [138] for the comprehensive survey) is one of such examples, where
the user interactively specifies evaluations required in evolutionary computation
(or, behaves as the fitness function in evolutionary computation). Brochu et al.
[33] presented a visual design optimization method where the user is asked by the
system to evaluate visual designs. We consider these methods as human compu-
tation although they are not always described as human computation explicitly.

For employing many human processors, one possible solution is to implicitly
embed human computation tasks in already existing tasks. reCAPTCHA [155]
takes such an approach where optical character recognition (OCR) tasks are
embedded to web security measures. A challenge of this approach is that most of
human computation tasks are difficult to naturally embed in existing tasks, and
it needs very careful interaction design to be successful.

To motivate many ordinary people to voluntarily participate in human com-
putation tasks, von Ahn proposed to do “gamification” of tasks so that they do
tasks purely for entertainment purpose [154]. These games are called games with
a purpose (GWAPs). For example, the ESP game [153] is a game in which play-
ers provide semantic labels for images (that can be used for machine learning)
without realizing it. The Foldit game [45] lets players explore and find protein
structures, which is a hard scientific problem.

Very recently, since the emergence of large-scale crowdsourcing markets, it has
become increasingly popular to employ human processors using crowdsourcing.
As we take this approach, we detail it in the following subsections.

2.4.2 Crowdsourcing

The term “crowdsourcing” was firstly introduced by Howe [62] in 2006, and later
explicitly defined in [61] as
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Figure 2.4: The number of newly published records in computer science
literature using the term of “crowdsourcing”. Search results were counted in the
ACM Guide to Computing Literature on October 23, 2016.

“Crowdsourcing is the act of taking a job traditionally performed
by a designated agent (usually an employee) and outsourcing it to an
undefined, generally large group of people in the form of an open call.”

Today, many online marketplaces for crowdsourcing are available for researchers,
such as Upwork [6], Amazon Mechanical Turk [1], and CrowdFlower [2]. Since
2006, crowdsourcing has been a more and more popular research topic in com-
puter science (see Figure 2.4).

Microtask-Based Crowdsourcing

One of the most attractive features in crowdsourcing is that anyone can sta-
bly hire a large number of crowd workers even for very small tasks on demand
without any communication cost for hiring. This is impossible without recent
crowdsourcing marketplaces [1, 2]. Amazon Mechanical Turk [1] is one of the
popular platforms suitable for outsourcing such a large number of small tasks.
We define microtasks as the tasks for crowdsourcing that is very small (usually
completed in a minute) and that can be conducted anyone who do not have any
special skills or domain knowledge. We would call this type of crowdsourcing as
microtask-based crowdsourcing. Figure 2.5 shows an example of such microtasks.
Although crowd workers in these platforms are usually non-experts, they do have
full human intelligence, which enables many emerging applications.

One of the popular usages of microtask-based crowdsourcing is to outsource
data-annotation tasks (e.g., [21, 20]) that could be useful as training data for
machine learning. Another popular usage is to conduct large-scale perceptual
user studies (e.g., [74]); by using microtask-based crowdsourcing, it is easy to
gather thousands of participants on demand, which were traditionally difficult.
The results of studies might be used to build computational perceptual mod-
els as discussed in Section 2.2. Microtask-based crowdsourcing is also used for
implementing crowd-powered user interfaces, interfaces that query crowd work-
ers to use their human intelligence in run time. For example, Soylent [25] is a
crowd-powered word processing system that utilizes human intelligence to edit
text documents. VizWiz [27] and VizLens [57] are crowd-powered mobile systems
for blind people to understand the real world texts and interfaces where users take
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Figure 2.5: An example of typical microtasks, taken from the tutorial in Crowd-
Flower [2].

photos of them and the systems ask crowd workers to read the contents appeared
in the photos. Voyant [162] is a design interface that gathers structured feedback
for a visual design from crowd workers.

Our systems described in Chapter 3 and Chapter 5 can be considered as crowd-
powered user interfaces to utilize human perception obtained through microtasks.
Compared to the crowd-powered systems discussed above, ours do not explicitly
indicate the presence of crowd workers to users; rather, our methods use crowd
workers as abstracted processing powers in the way of human computation. We
discuss this approach in Subsection 2.4.3.

One issue that should be cared in microtask-based crowdsourcing is the qual-
ity control of workers’ responses [64]. Crowd workers might make poor-quality
responses because of cheating, misunderstanding of tasks, or simply mistakes.
Various quality control methods are investigated in machine learning community
[83]. In this thesis, we adopt a simple quality control method based on redun-
dancy called duplication (used in many works, e.g., [55, 39, 111, 54]), and leave
it future work to investigate better quality control strategies suitable for our
methods.

Expert Sourcing

Another attractive feature in crowdsourcing is that we can easily hire skilled ex-
perts (e.g., web developers, designers, and writers) for professional tasks, which
is called ezpert sourcing. Some online marketplaces, e.g., Upwork [6] (formerly
Elance-oDesk), provide such an opportunity for researchers to reach experts. For
organizing expert crowds in a computational manner, Retelny et al. [119] pre-
sented techniques called flash teams. Suzuki et al. [136] presented an idea of
micro-internships for expert sourcing, where relatively unskilled crowds can de-
velop their skills via internship tasks working with more skilled (mentor) workers.

However, asking professional designers takes significant communication costs
and large variances between individuals’ skills. Compared to microtask-based
crowdsourcing, expert sourcing is less suitable for employing human processors
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and for designing human computation algorithms that work stably, on demand,
like a cloud computing.

Optimizing Crowdsourcing Performance

One of the issues in crowdsourcing is the latency for obtaining responses from
crowds. This is not very critical when, for example, researchers use crowdsourcing
for gathering training data for machine learning (e.g., [124, 39, 54, 111]), because
this latency is experienced only once. In contrast, the latency can be critical when,
for example, end-users use crowd-powered systems (e.g., [27, 25, 24, 162]), because
long latency badly affects user experience. To reduce such latency, Bigham et
al. [27] proposed quikTurKit, which enables nearly real-time responses (e.g., 2
minutes from the generation of task queries), and Bernstein et al. [24] proposed
the retainer model, which further reduces the latency to a few seconds. In this
thesis, although our Method A and C are crowd-powered systems and thus small
latency is desirable, efforts in this direction is out of our scope.

Another issue in crowdsourcing is monetary cost, and crowd-powered systems
might be desirable to minimize this. However, simply paying less rewards for the
same tasks might cause issues in fairness regarding the minimum wage; see the
discussions in Dynamo [121, 49], which is a crowdsourcing guideline for academic
requesters. While we avoid to query unnecessary tasks to reduce monetary (and
timing) cost, currently we do not try to optimize the rewards setting, which is
out of the scope of this thesis.

2.4.3 Crowdsourced Human Computation

We define crowdsourced human computation as a form of human computation
where human processors are employed via microtask-based crowdsourcing. This
means that programmers can embed “oracles” requiring human intelligence into
their codes like as typical function calls. Little et al. [87] presented TurKit Script,
a programming API for developing algorithms using crowdsourced human com-
putation (which they call human computation algorithms). See Figure 2.6 (Left)
for an example.

Gingold et al. [55] proposed several methods for solving long-standing visual
perceptual problems using crowdsourced human computation, including extrac-
tion of depth and normal maps for images and detection of bilateral symmetries
in photographs (see Figure 2.6 (Right)). Their image-understanding algorithms
are designed to decompose the original difficult problem into a set of easy percep-
tual microtasks, solve the perceptual microtasks using crowdsourcing, and then
recompose the responses from crowds using some computational techniques. In
our Method A and C, we want to solve computationally complex problems (i.e.,
regression and optimization of goodness functions), so that we seek how to de-
compose the problems into easily solvable microtasks, and how to recompose the
crowds responses for our problem settings.

2.5 Parametric Spaces in Visual Design

Our target application domain can be considered as parametric design. We use
the term, parametric design, as the design paradigm where visual contents are
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ideas = []

for Cvar i = 0; 1 <5; i++) {
idea = mturk.prompt(
"What’s fun to see in New York City?
Ideas so far: " + ideas.join(C", "))
ideas.push(idea)

ideas.sort(function (a, b) {
v = mturk.vote("Which is better?", [a, b])
return v==a? -1 : 1

i)

Figure 2.6: Examples of crowdsourced human computation. (Left) An exam-
ple of TurKit Script [87] for organizing ideas using crowdsourced human computation.
(Right) Results of the crowd-powered algorithm of extracting a depth map from an image
[55].

solely controlled by a set of (either continuous or discrete) parameters. That is,
given a set of parameters, a visual content is solely determined. Also, in paramet-
ric design, the number of parameters is often reasonably small so that designers
can manually tweak them. For example, to adjust the tone of a photograph,
designers tweak several sliders such as “brightness” and “contrast”, not tweaking
RGB values of every pixel one by one; this is considered that the design space
here is parametrized by several degrees of freedom (i.e., sliders), and thus this is
considered a parametric design.

Parametric design can be found almost everywhere in visual design production.
In Adobe Photoshop Lightroom CC [9, 10], which is used for photo enhancement,
there are tens of sliders that control color enhancement. After Effects [7], which
is a motion graphics software, has many visual effect options each of which is
usually controlled by a few sliders. 3D graphics tools, such as Unity [150] and
Maya [16], require designers to adjust sliders for, for example, camera effects,
material BRDFs, positions of game objects such as point lights, to obtain visually
pleasing designs. In the digital fabrication context, parametric 3D models, also
called customizable models, are popular among maker communities [5, 78, 130].

Computer graphics researchers have investigated methods for defining better
parametric design spaces. In 3D modeling contexts, human face [29] and body
[14, 92] are parametrized using data-driven approaches. Facial expression of
virtual characters is often parametrized using blendshape techniques [120, 84]. For
material BRDF design, Matusik et al. [L00] proposed a parametric space based on
measured data, and Nielsen et al. [106] applied dimensionality reduction to the
space. Procedural modeling of 3D shapes, e.g., botany [157], is also considered
as parametric design in that the shapes are determined by a set of tweak-able
parameters. Recently, Yumer et al. [166] presented a method for re-designing
parametric spaces for procedural modeling using autoencoder neural networks;
their method produces lower-dimensional, more intuitive design spaces. Some
2D texture images can be designed by adjusting a few sliders, using procedural
texture techniques such as Perlin noise [113, 114]. One of the recent trends is
to define parametric spaces based on semantic attributes for facilitating intuitive
exploration; this direction has been investigated for, e.g., shape deformation [167],
cloth simulation [131], and human body shape [135].

Although we test our methods mainly using the example of photo color en-
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hancement, we envision to support (or automate) various parameter tweaking
scenarios in visual design such as ones discussed above. Thus, we try to make
our methods as general as possible by not relying on domain-specific formu-
lations. Note that it is possible to extend our methods to be combined with
domain-specific heuristics, which we leave as future work.

2.6 Summary

Our computational design methods are distinct from many of such existing meth-
ods in that ours consider perceptual aesthetic preference as the design criterion,
and also in that we intend not to rely on domain-specific heuristics. Our solu-
tions are based on novel parameter tweaking interfaces utilizing estimated pref-
erence (the methods described in Chapter 3 and Chapter 4), and effective usages
of crowdsourced human computation (the methods described in Chapter 3 and
Chapter 5). As parametric design is popular in many visual design domains, our
potential applications can be broader than those demonstrated in this thesis.
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Chapter 3

Crowd-Powered Parameter Preference
Estimation

In this chapter, we describe the crowd-powered estimation method, a new method
to construct a goodness function that computes the goodness value of a given pa-
rameter set in the target design space. In other words, this method analyzes
a high-dimensional design parameter space to estimate a distribution of human
preference. This method uses crowdsourced human computation to gather pair-
wise comparisons between various parameter sets. The estimated goodness func-
tion enables two interfaces for facilitating design exploration: Smart Suggestion,
which provides suggestions of preferable parameter sets, and VisOpt Slider, which
interactively visualizes the distribution of goodness values on sliders and gently
optimizes slider values while the user is editing. We tested this method in four
applications with different design parameter spaces.

3.1 Introduction

Exploring possible visual designs by tweaking parameters is a common practice
when designing digital contents, as discussed in Chapter 1 and Section 2.5. This
parameter tweaking task can essentially be considered an iterative optimization
process performed manually. However, this process is often tedious and time-
consuming, especially when there are many parameters to adjust, because the
high dimensionality of the design space makes it exponentially difficult to visit
all possible ones. We aim at providing computational supports for this situation.

We present a new method to facilitate manual parameter tweaking for visual de-
sign, by utilizing computational techniques for estimating parameter preference.
In the proposed approach, we use crowdsourced human computation to gather
human-generated preference data, i.e., pairwise comparisons between various pa-
rameter sets. Users first specify a set of target sliders to be tweaked. The system
then analyzes the parameter space using crowdsourced human computation and
constructs a goodness function, which is a function that takes a parameter set
as input and quantifies how aesthetically good it is. We then use the goodness
function to enable two novel interfaces: Smart Suggestion (Figure 3.1) and Vi-
sOpt Slider (Figure 3.2). Smart Suggestion is an interface that can provide users
with appropriate parameter set choices as suggestions, based on their estimated
goodnesses. VisOpt Slider is an extension of the conventional slider component,
in which the distribution of goodness values is directly visualized on sliders, and
it dynamically updates the visualization on the basis of the currently chosen
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Figure 3.1: Smart Suggestion. The user can obtain appropriate parameter sets as
suggestions, which are generated considering goodness of designs.
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Figure 3.2: VisOpt Slider. The user can adjust each parameter effectively by the
visualization (Vis) near the slider and the optimization (Opt) that gently guides the
current parameters to the optimal direction.

slider values. In addition, the slider values can be interactively and continuously
optimized to a better direction as the user is editing. These two interfaces are
complementary; e.g., a user can first obtain a reasonable starting point by Smart
Suggestion, and then interactively tunes it up using VisOpt Slider.

In this chapter, we offer two specific contributions:

e A framework and techniques to estimate a preference distribution in the
target design space, i.e., a goodness function. Here we utilize crowdsourced
human computation to gather necessary preference data, which is a set of
pairwise comparisons of possible designs.

e Two specific user interfaces for facilitating users’ manual exploration of
the design space, Smart Suggestion and VisOpt Slider, both of which are
enabled by the estimated goodness function.

To evaluate our method, we performed experiments with four applications: photo
color enhancement (6 parameters), camera and light control in a 3D scene (8 pa-
rameters), material BRDF design using a shader (8 parameters), and blendshape
facial expression (53 parameters). We checked the quality of analysis, and con-
ducted an informal user study of our interfaces.
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Figure 3.3: Overview of our crowd-powered analysis algorithm.

3.2 Crowd-Powered Parameter Analysis

3.2.1 Overview of the Process

Our approach employs a crowdsourcing platform to analyze parameters to sup-
port the tweaking of visual design parameters. The definition of a parameter set
in this thesis is an n-dimensional vector x € X = [0, 1]™ that consists of n continu-
ous parameters z; € [0,1] fori =1,...,n. Note that we do not deal with discrete
parameters such as font or layout selection. We assume that the final form of a
design task can be visualized as a 2D image I and that given a parameter set
X, the design software deterministically provides an image, which we describe
as I(x). In other words, our target design tasks are completely parameterized
by n parameters. This assumption is true in many cases, especially in the final
steps of actual design processes. For example, when 3D game developers finish
their implementation of game logic, the final step of the game creation could be
the parameter tuning of the game scene visuals, such as the positions of game
objects, the lighting conditions, the camera pose, and the shader parameters.

The goal of the analysis is to obtain a continuous scalar-valued function, or
a goodness function, g : X — R that maps a parameter set to its estimated
goodness; that is, to obtain a function g¢(-) that takes a parameter set x as
input and computes an estimated goodness value y = g(x) as output. In this
chapter, we define goodness as a continuous value from 0 to 1, where 1 is the
most preferable and 0 is the least.

Our process to obtain a goodness function consists of four steps, as shown in
Figure 3.3. First, the system generates sampling points on the high-dimensional
parameter space (displayed here as a 2-dimensional space for simplicity). Sec-
ond, using crowdsourced human computation, the system gathers pairwise com-
parisons of these sampling points. Third, on the basis of this comparisons, we
analyze the goodness value for each (discrete) sampling point. Fourth, the system
interpolates the goodness values and obtains a continuous scalar function, i.e., a
goodness function, as a result of the analysis.

Our method can be considered as one of the learning-from-crowd problems
[141, 124, 39], but the problem we are addressing here requires some special
treatments. First, the data that we deal with is a set of noisy relative scores
between two sampling points, not absolute goodness values. In addition, the
derived function is required to be very fast to compute its value for a given
parameter set to realize our interaction techniques, and also required to be able
to represent a highly nonlinear distribution to deal with various design spaces.
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In our understanding, any existing algorithm has not solved this specific problem
yet, and cannot be applied to our problem without significant extensions.

3.2.2 Sampling Parameter Sets

First, the system samples M parameter sets x1, ..., X s from the parameter space
X for the later process of crowdsourcing. To do this, we simply choose a ran-
dom uniform sampling; the system randomly picks a parameter set up from the
parameter space and repeats this process M times.

There might be smarter ways to sample parameter sets to achieve more effective
crowdsourcing. For example, Secord et al. [124] took a nearby sampling approach,
in which the system samples pairs of parameter sets that are located “near”
to each other. However, nearby sampling requires empirical knowledge of the
parameter space, which prohibits us from using it because we want to deal with
various types of parameter spaces. Tamuz et al. [141] proposed a sophisticated
adaptive sampling method for a crowd-powered analysis; however, their method
cannot be directly applied for our problem because it is not designed to derive
a continuous scalar function as output. It might be possible to further improve
our results by using their adaptive sampling method, but the random sampling
serves sufficiently well for our requirements.

3.2.3 Gathering Pairwise Comparisons by Crowdsourcing

The next step is to gather information on the goodness of each sampling point.
Because the goodness value is essentially evaluated by human preference, we
use a human computation technique based on crowdsourcing. A possible naive
approach is to ask crowd workers to provide the absolute goodness values on
sampling points directly; however, this is impractical because the concept of
goodness is too abstract and the measure scale depends on the individual.

Thus, we take a pairwise comparison approach [124, 55, 39] in which crowd
workers are shown a pair of designs and asked to choose the best one. As a
result, relative scores instead of absolute ones are obtained. Unlike most of the
previous approaches, we use the 5-pt Likert scale (from 1 to 5) to rate a design
pair, where 1 means one design of the two is definitely better, 5 means the other
design is definitely better, and 3 means neutral. Our algorithm welcomes the
“neutral” score, as it is considered a constraint that the two parameter sets have
the same or nearly the same goodness values.

Let P be a set of pairs of indices {(1,2),...,(M —1,M)}. For each (i,5) € P,
the system generates two images I(x;),I(x;), shows the pair side by side to
a crowd worker, and asks him or her to rate its relative score. Eventually, it
gathers M /2 scores, and each image is shown and rated once.

The instruction of the microtask for crowd workers is important in terms of
the quality of obtained data. Because the purposes and contexts of using our
system differ depending on the situation, we prepare a template of instruction
for users rather than providing a fixed instruction. The template that we used in
our experimentation is:

“Which of the two images of [noun] is more [adjective]? For example,
[clause]. Please choose the most appropriate one from the 5 options
below.”
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Answer for No.03
1 2 3 4 5

Figure 3.4: A screen capture of the microtasks used in our method. We took
a pairwise comparison approach with 5-pt Likert scale rating.

In accordance with the purpose and the content, the user gives a noun, an adjec-
tive such as “good” or “natural”, and a clause that explains a concrete scenario
to instruct crowd workers more effectively. After this instruction, two images
and five options appear. These options are linked to the Likert scale; e.g., “the
left image is definitely more [adjective] than the right image” is for option 1, and
the complete opposite is option 5. Option 3 is “these two images are equally
[adjective], or are equally not [adjective].” Figure 3.4 shows a screen capture of
a microtask that was actually used in our experiments.

To control the quality of the data, we take the duplicate approach, as do several
of the previous works [124, 55, 39]. We first asked 10 questions and then asked
10 more identical questions but with the arrangement of the two images flipped.
If the answer of a question contradicted the duplicated correspondent, we simply
discarded the answer. We also discarded all answers from a particular crowd
worker if more than half the answers contradicted. This algorithm cannot detect
if all 20 answers have been (lazily) rated as “3”, and so the system checked such
cases and discarded them if so.

In the remainder of this chapter, we represent P’ as a subset of P, each of which
have passed the quality check, M’ as the number of sampling points that have
passed the quality check, and Q = {q1,...,qn} as a set of indices of sampling
points that have passed the quality check.

3.2.4 Estimating Goodness Values of Sampling Points

Given the relative scores, the next goal is to compute the absolute goodness values
Y= [Ya " Yau |7 at the sampling points x,, ... yXq,,- Sykora et al. [137]
dealt with a similar problem where, given the relative orders of pairs of points, the
system estimates the entire consistent orders of all points. The difference between
their target problem and ours is the existence of inconsistent relative orders; in
our case, the solution that satisfies all the relative orders does not generally exist
because the data is from unreliable crowds and is based on human preference.
Gingold et al. [55] presented a robust algorithm for this problem, but it can only
handle relative orders of adjacent areas, and their 2D-based algorithm cannot
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Figure 3.5: Effect of the continuity constraint. This constraint ensures that the
estimated goodness values are continuously distributed.

be extended to high-dimensional parameter space due to its high computational
cost.

Thus, we present a new formulation for this problem. We consider a constraint
based on the relative scores as a cost function

Eretative(y) = Y llyi —yj — dijl”, (3.1)
(i,9)eP’

where d; ; is an offset distance between the i-th and j-th goodness values, defined
as

1 (relative score = 1)
0.5  (relative score = 2)
dij=14 0 (relative score = 3) . (3.2)
—0.5 (relative score = 4)
—1  (relative score = 5)

Considering only the relative constraint results in a disconnected, jagged dis-
tribution of goodness values (Figure 3.5 (Left)). This is undesirable because we
are handling continuous parameter space, and thus we expect the goodness func-
tion to also be continuous (Figure 3.5 (Right)) and smooth in most cases. We
therefore add a constraint based on the assumption of continuity:

2

1
Econtinuous(y) = Z Yi — m Z Yil|l (33)
i€Q tjeN;

where N; stands for the set of neighborhoods of the i-th sampling points. In our
implementation, A; is defined by k-nearests in Euclidean distance (k = 20). Note
that this continuous constraint is popular in many Laplacian frameworks such as
mesh smoothing [133, 104], and is beneficial for ensuring that the distribution of
the reconstructed values is spatially smooth.

Taking these two constraints into consideration, the system solves the following
minimization:

m}in {Erelative (Y) + WEcontinuous(Y)} s (34)

where w > 0 is a parameter that defines the balance of these two constraints. In
all experiments introduced in this chapter, we set w = 5.0.
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Using matrix form, the minimization problem can be written as
. 2 2
min {|[Ay — d|]” + w|Ly]?} . (3:5)

where the first term corresponds to the relative constraint, and the second term
corresponds to the continuous constraint. A € RM'*M" s defined as A =
1,A;; = —1if (i,5) € P’ and otherwise 0, d € RM' is defined such that d; = d; ;
if (i,j) € P’ and otherwise 0, and L is the graph Laplacian matrix. By setting
the derivative with respect to y to zero, the following linear equation is obtained:

(ATA + wLTL> y = ATd. (3.6)

This provides the optimal solution of the minimization problem and could easily
be solved by applying standard techniques such as Cholesky decomposition. Here
we can also apply sparse Cholesky decomposition as AT A + wL”L is sparse.

After solving this minimization problem, we linearly normalize the solution so
that the maximum goodness value is 1 and the minimum is 0.

3.2.5 Fitting a Goodness Function

Our goal is now to obtain a continuous goodness function from the obtained
goodness values of the sampling points. The fitted function needs to be efficient
enough for use in real-time visualization and optimization for user interfaces,
so we chose the radial basis function (RBF) interpolation technique for fitting,
which is often used to smoothly interpolate known values at various points (RBF
centers) and thus create a continuous function [28, 15]. We use the parameter
sets Xgy, . .-, Xgq,,, as the locations of the RBF centers and the obtained goodness
values yq,,...,Yq,,, as the target values. That is, we represent the goodness
function g(-) as

g(x) = > wid(|lx —xil)), (3.7)

1€Q

where ¢(-) is a radial basis function, and w = [wq, -+ wy,, |” are the RBF
weights that we are going to compute. We used ¢(r) = r as the basis function but
found the Gaussian kernel also works well and does not result in any significant
differences.

The “exact” RBF interpolation scheme is not robust for dense, noisy data.
We therefore add a regularization term when computing RBF weights [28, 15].
Specifically, we solve the following minimization problem to obtain w:

2

min ¢ > [ D0 wie (i — ;) — ||+ Awl? (3-8)

W
1€Q ||7€Q

where A > 0 is the parameter for controlling regularization. We set A = 0.1 in
this work. We found that this regularization was able to avoid overfitting with
our data. Optionally, we compute the reduction of RBF centers [37] to improve
computational efficiency in interactive use.
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Figure 3.6: Appearance of Smart Suggestion interface. Nine candidates are
presented in a 3 x 3 grid and the user can choose one by clicking it.

3.3 User Interface

We use the results of parameter analysis to create two types of user interface to
facilitate parameter tweaking tasks and design exploration.

3.3.1 Smart Suggestion

Smart Suggestion is a function that generates nine parameter sets having rela-
tively high goodness values and displays the corresponding designs as suggestions.
This interface facilitates design exploration by giving users a good starting point
to find a better parameter set for the visual design.

Our current implementation takes a simple approach to generate quality sug-
gestions: the system generates 2,000 parameter sets randomly and then selects the
9-best parameter sets according to their goodness values. This simple algorithm
interactively provides suggestions of an adequate quality, which enables users to
re-generate suggestions quickly enough for interactive use if none of the sugges-
tions satisfy them. To generate higher-quality suggestions, other techniques such
as diversity optimization [13] or the dispersion technique [97] could be useful.
However, we feel that it is better to avoid spending too much time generating
optimal suggestions, and instead focus on interactively providing suggestions of
sufficient quality.

3.3.2 VisOpt Slider

The VisOpt Slider (Figure 3.2) displays colored bars with a visualization (Vis) of
the results of parameter analysis. The distribution of goodness values is directly
visualized on each slider using color mapping, which navigates the user to tweak
parameters. When the optimization (Opt) is turned on, the parameters are au-
tomatically and interactively optimized while the user is dragging a slider. That
is, when a user starts to drag a slider, the other sliders’ ticks also start to move
simultaneously to a better direction according to the user’s manipulation.

A visual bar shows the distribution of goodness values along the line that passes
the current parameter point and whose direction is the same as the parameter’s
axis (Figure 3.7). When the user modifies a certain parameter, the visualizations
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Figure 3.7: Visualization function in VisOpt Slider. Each colored bar shows the
distribution of goodness values along the corresponding slider.

of the other parameters will change dynamically. This visualization continuously
tells the user which parameter should be modified and how much the parameter
should be modified, thus achieving higher quality designs. This helps the user
not only find better parameter sets quickly but also explore the design space
effectively without visiting “bad” designs.

The purpose of the optimization is not to find the optimal parameter set au-
tomatically but rather to assist manual interactive exploration on the part of
the user by gently guiding the current parameter set to a reasonable direction.
To achieve this, we use the gradient ascent method with a fixed number of it-
erations, following Prévost et al.’s and Umetani et al.’s work [115, 149]. In this
method, the system first computes the gradient of the goodness function at the
current parameter set and then slightly modifies the set to move in the gradient
direction instead of instantly jumping to the optimal solution. This enables the
user to gradually approach to the optimal solution by continuously scribbling the
slider knob back and forth. We numerically compute the gradient using forward
differentiation. This process could be written as

x ¢ x+aVyg(x), (3.9)

where o > 0 is a small value parameter that defines the strength of optimization.
Note that, in order to avoid conflicting with the user’s editing, the system does
not update the currently edited parameter. This process is performed every time
the system receives a slider-value-changed event. In our experimentations, we
typically set a = 0.005.

3.4 Applications

We tested our method by using it with four example applications. All four ap-
plications are from different domains to demonstrate that the proposed method
is suitable for general (not domain-specific) use. We chose CrowdFlower [2] as
the platform of crowdsourcing. Table 3.1 lists a summary of the crowdsourcing
statistics. We analyzed each parameter space using all the “valid” comparisons
we obtained as a result of crowdsourcing.
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Table 3.1: Statistics of crowdsourcing in the experiments. Adjective shows the words we used for the instructions. For each application, we
ordered a fixed number of tasks at once, each of which contains 10 comparisons and 10 duplicated comparisons for quality control. We typically chose
200 for the number of tasks, but 600 for the facial expression application because the parameter space is quite high-dimensional. We paid a fixed amount
of money for each task regardless of the quality; for example, in the case of the photo color enhancement, we paid 200 x 0.02 = 4.00 USD for workers
in total. The number of valid comparisons indicates |P’|, which is the number of comparisons that passed quality check. We allowed crowd workers to
perform two or more tasks if they want, so we also report the number of unique workers. Completion time denotes the passed time from the point when
the first task is started to the point when the final task is finished.

7 #Parameters  Adjective #Tasks Pay [USD / task] #Valid comparisons #Unique workers ~Completion time [min] &

Photo Color Enhancement 6 good 200 0.02 1095 45 30
Camera and Light (Dragon) 8 good 200 0.02 1010 26 25
Camera and Light (Bunny) 8 good 200 0.02 922 35 40
Shader (Kitchen) 8 realistic 200 0.02 907 46 34
Shader (Window Seat) 8 realistic 200 0.02 875 47 24
Facial Expression 53 natural 600 0.02 1771 57 55
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0.72 0.98 0.95

Figure 3.8: Original input image and images generated by Smart Sug-
gestion in the photo color enhancement application. (Left) The original in-
put image (g(-) = 0.72). (Middle and Right) Images generated by Smart Suggestion
(g(-) = 0.98,0.95).

3.4.1 Photo Color Enhancement

When enhancing colors of digital photos, users have to tweak many parameters,
including unintuitive ones that are difficult for novices to understand. To facili-
tate this task, we selected six popular parameters for this application: brightness,
contrast, saturation, and color balance (Red, Green, and Blue). For this exper-
iment, we chose a photograph of vegetables (Figure 3.8 (Left)) from a photo
sharing service (Morguefile [4]). In the crowdsourced microtasks, we asked crowd
workers to choose the photograph that would be better to use in a magazine or
product advertisement.

Figure 3.8 (Middle and Right) shows typical images suggested by Smart Sug-
gestion. Examples of VisOpt Slider visualizations with typical parameter sets are
shown in Figure 3.9. These visualizations provide assorted useful information; for
example, the photo at left needs to have a higher contrast, the center photo can be
improved by making the brightness slightly higher and the red balance slightly
lower, and the right photo is already good and does not require any dramatic
improvements.

3.4.2 Camera and Light Control

Secord et al. [124] presented a computational perceptual model for predicting
goodness of viewing directions for 3D models; however, their model is limited to
the view direction and does not consider any other factors. We feel that good
views will change according to other conditions such as perspective and lighting.
In this scenario, we chose a camera and light control task in a simple 3D scene
consisting of a 3D model, a perspective camera, and a point light. There are eight
parameters to tweak in total, including camera position (—3.0 < zyz < 3.0),
camera field of view, light position (—3.0 < zyz < 3.0), and intensity of light.
We used the dragon model (which is almost symmetric), and the bunny model
(which is asymmetric). The orientation of the camera is automatically set such
that it always looks at the center of the model. We asked crowd workers to choose
the better one with the same instruction.

The results indicate a highly non-linear relationship between camera and light
parameters. When the camera comes to the left side (i.e., camera.z < 0.0, see
Figure 3.10 (Middle)) from the right side (i.e., camera.z > 0.0, see Figure 3.10
(Left)) of the dragon model, the visualization tells us that we should also move
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Figure 3.9: Designs and visualizations of goodness distributions in the photo
color enhancement application.

the light to the left side (i.e., light.z < 0.0) so that the model is adequately lit.
Figure 3.10 (Right) shows the views using the bunny model, where we applied
exactly the same parameter sets as to Figure 3.10 (Left). It is observed that the
visualizations between the case of the dragon and the bunny are quite different
even when the parameter sets are equivalent, which indicates that different models
have different goodness functions.

3.4.3 Shader (Material BRDF)

As Talton et al. [139] and many other researchers discussed, shading is quite diffi-
cult for novices to understand and tweak and even game developers and computer
graphics researchers struggle with it at times. The problem is that shaders often
have unintuitive parameters that affect the final look in a way that is difficult for
casual users to predict, such as “Fresnel Reflection” or “Metallics”. Furthermore,
the final rendered images are different depending on many different factors such
as lighting conditions and the geometric features of the 3D models. Thus, users
have to explore the best parameters for each scene, which is time-consuming. For
this experiment, we used a shader for photo-realistic metals provided in a popular
shader package in Unity Asset Store, Hard Surface Shaders Free [3]. We applied
this shader to a teapot model. We chose all the eight parameters provided by the
shader, and asked crowd workers to choose the one that was the most realistic
as a stainless steel teapot. We experimented with two different scenes: a kitchen
scene with standard lighting and a window seat scene with backlighting.

Figure 3.11 shows typical parameter sets with their visualizations. From these
visualizations, we can learn, without any trial-and-error, that the “Reflection”
parameter (the fifth parameter in Figure 3.11) performs the most important role
in this application. We observed that the distributions of goodness values are
different from each scene; for example, a parameter set whose goodness value
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Figure 3.10: Designs and visualizations of goodness distributions in the cam-
era and light application. (Left) A parameter set is applied to the dragon scene,
whose camera.z (the third slider) is set to the maximum value. (Middle) Another pa-
rameter set whose values are the same as the left one except that camera.z is modified
to the minimum value. (Right) The same parameter set as the left one is applied to the
bunny scene.

Camera.fov

was 0.67 in the kitchen scene had a goodness value of 0.93 in the window seat
scene.

3.4.4 Blendshape Facial Expression

Blendshape is a standard approach to control the facial expressions of virtual
characters [84], where a face model has a number of predefined continuous pa-
rameters and its expression is controlled by artists/designers by tweaking the
parameters. Such direct control is made tedious because of the number of pa-
rameters. Furthermore, as discussed by Lewis et al. [84], the space of “valid”
expressions is actually quite small in most cases, which means that extremely
careful tweaking is required to ensure natural, unbroken expressions. In this sce-
nario, we used a head model whose blendshape is defined with 53 parameters
(48 based on FACS [120], and 5 for jaw control). We suppose that the goodness
in this design scenario can be approximated as the validity of the facial expres-
sion, so that we asked crowd workers to choose the better “natural (unbroken)”
expression.

Figure 3.12 shows typical designs and their estimated goodness values. We
believe that the goodness function is successfully constructed and gives reasonable
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Figure 3.11: Designs and visualizations of goodness distributions in the
shader application. (Left and Middle) Kitchen scene. (Right) Window seat scene.

values for even this high-dimensional application. Unlike random suggestions
(typical goodness values are between 0.3 and 0.6), where most of expressions are
broken, Smart Suggestion can provide relatively better starting points (around
0.7) with a high enough quality to inspire users. The optimization function in
VisOpt Slider also works well with this large number of parameters to avoid
wasting time with “invalid” expressions. However, we found that the colored
visualization was often useless because every visualization bar tends to show a
similar color along its axis in this large parameter space.

3.5 Evaluation

We evaluated our method from two aspects: the quality of the estimation of the
goodness function, and the usability of the user interfaces. As we do not have a
“ground truth” of the goodness function, we indirectly evaluated the estimation
quality by checking its convergence behavior with respect to the number of data,
and its prediction ability by a hold-out test. For evaluating the usability, we
conducted an informal user study.

3.5.1 Quality of Analysis

Convergence with respect to the Number of Comparisons

It is important to understand how many comparisons are necessary for each
application. If there are too many comparisons, it takes extra time and money,
and if there are too few, the obtained goodness function might be missing the
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0.61 0.68 0.70 0.88

Figure 3.12: Typical facial expression designs controlled by 53 blendshape param-
eters. The values shown below pictures are the corresponding goodness values computed
by our method.

important feature of the parameter space. Here, we discuss the convergence
behavior graphs (Figure 3.13) of the shader and the facial expression applications,
where the goodness values of 30 randomly selected parameter sets are plotted
for each graph. Beginning with 20 comparisons, we constructed the goodness
function using the limited number of comparisons, and then repeatedly increased
the number of used comparisons by 10. Invalid comparisons that did not pass
the quality control were excluded.

As shown in the graph of the shader application, the curves are relatively stable
with more than 400 comparisons (roughly more than 2 USD), though they do not
converge completely. Since our goal is to assist users with interactive exploration
rather than to find the exact optimal parameter set automatically, we believe our
analysis is convergent enough for the purpose. We observed similar convergence
graphs in the other applications, and even, somewhat surprisingly, it is true in
the facial expression with 53 parameters, where more than 900 comparisons were
required to be stable.

Adequacy of Estimated Goodness Functions

To check the adequacy of the estimated goodness functions, we applied a hold-
out test to the acquired data set for the photo color enhancement, the shader,
and the facial expression applications. We randomly selected 100 samples from
the valid comparisons P’ obtained via crowdsourcing as a testing set, which we
denote P{esﬁng. Then, we trained the goodness function g(-) by using the rest
of the valid comparisons Py ,ining = P’ \ Plesting a5 @ training set. The sizes of
training data set are 995 for the photo color enhancement, 807 for the shader with
the kitchen scene, and 1671 for the facial expression. If the estimated goodness
function g(-) obtained from Py, i, is adequate, it should be able to predict the
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Figure 3.13: Convergence behavior of estimated goodness values with respect
to the number of comparison data. Each curve shows the transition of the goodness
value on a randomly selected parameter set.

distribution of the scores of the comparisons in P{.;,,- That is, as for a paired
comparison in the testing set (i, 7) € P{estmg, the difference between the estimated
goodness values g(x;) — g(x;) should be correlated to the score (1-5) given to the
pair by a crowd worker. We show such plots in Figure 3.14. Although the data
shows large variance due to diversity of human preference and noise from careless
workers, we can still observe a tendency that a crowd worker is likely to rate the
i-th design higher than the j-th design when the goodness value for i-th design
(i.e., g(x;)) is higher than that for j-th design (i.e., g(x;)). This indicates that
the trained goodness function g(-) successfully predicted the relative goodness
values of paired comparisons that do not appear in the training set.

3.5.2 User Study of the Interfaces

We conducted an informal user study to determine whether Smart Suggestion
and VisOpt Slider interfaces are useful for novice users or not. Four computer
science students participated in this study. We asked them to explore the design
spaces and find the best parameter sets on the four applications, where they
can use both random suggestions/standard sliders and Smart Suggestion/VisOpt
Slider. After the trial, we asked the participants to fill questionnaires.

We found all the participants could use our proposed interfaces effectively.
The score of System Usability Scale (SUS) [19] was 77.5 on average (SD = 11.6),
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Figure 3.14: Correlation between the scores for pairwise comparisons by
crowds and the estimated relative goodness values. Black lines are the fitted
lines. Note that the plotted data are not included for estimating the goodness function

g(-).

which could be considered as “good”. All the participants preferred to use the
Smart Suggestion rather than random suggestions (6.75 on average with 7-pt
Likert scale; 7 is the best), and also preferred VisOpt Slider rather than standard
sliders (6.25 on average). Overall, a combination of the Smart Suggestion and
VisOpt Slider interfaces is preferable to use (6.25 on average).

3.6 Discussion

The results of the user study suggests that the Smart Suggest and VisOpt Slider
interfaces provide users with a good starting point for designing visuals. For
examples, modeling a facial expression is usually quite difficult, but users suc-
cessfully used Smart Suggestion to select a sample expression with which to start
the precise control, thus reducing the amount of time needed to create a visual.
In the case of the camera and lighting control application, the VisOpt Slider
helped users find better lighting parameters automatically during controlling one
parameter for the camera. In the case of photo color enhancement, there are
some automatic enhancement algorithms (e.g., [35]); however, such algorithms
typically cannot consider the semantic context of photos. For example, a user
might want to make a photograph “sad” or “happy” by changing its color. This
is not possible with typical automatic methods.

The facial expression application, for example, takes an hour and costs more
than 10 USD for the crowdsourcing, which might reduce user motivation to use
our interface. However, there are certain cases where the task is very critical
(e.g., preparing a visual for a large-budget advertising campaign), and knowing
general-public preference (customer opinion) via crowdsourcing is worth investing
time and money. Another possible scenario for the facial expression application
is that the 3D modeler can sell his or her 3D face model with the result of the
parameter analysis. In this case, end users can use our user interface without
running costly analysis by themselves.
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3.6.1 Other Possible Representations of (Goodness Function

In this work, we chose a non-parametric representation based on RBF network
as a representation of goodness function. The role of this function is similar to
the ranking function, for example, proposed by Chaudhuri et al. [39], where they
represented it as a simple weighted sum of the input vector. Secord et al. [124]
proposed some representations for goodness function based on linear- K models
and a quadratic model. We believe that simply applying their techniques to our
problem cannot capture the non-linear distribution of goodness shown in our
visualization, and also the non-linear relationships such as the relative positions
of the camera and the light. Note that Secord et al. [124] also proposed a non-
parametric representation based on the K-nearest-neighbors model in their paper.
However, it cannot be used for our purpose since it cannot compute a goodness
value for a single parameter set but only the preference in a pair of parameter
sets; furthermore, it is computationally too expensive to use for user interfaces.
The method proposed by Chu and Ghahramani [41] may be applied instead of
ours for representing the goodness function. Their method assumes a Gaussian
process prior on the goodness function, and estimates the function from pairwise-
comparison data. While their method only handles data based on two-alternative
forced choice (2FAC), our method can handle data based on n-pt Likert scales
(in the experiment, we chose n = 5), which is potentially more informative than
2FAC. As an additional informal experiment, we compared estimated functions
using their method and ours with n = 2 (this is equivalent to 2FAC), from the
same synthetic data; we did not observe any significant difference between them.

3.6.2 Limitation

In this approach, every different image task requires re-crowdsourcing, and this
limits the scalability; to improve this, it is possible to combine multiple crowd-
sourced data sets or reusing previous ones. Another notable limitation is that
the user has to make the instruction for crowdsourcing. This was not evaluated
in the user study. Instruction templates can be utilized, but this part cannot be
fully automated.

At present, we cannot obtain the parameter analysis results in real time because
we use the crowdsourcing platform. From the statistics of the crowdsourcing we
conducted, roughly half an hour seems required for around 8-dimensional design
tasks and one hour for around 50-dimensional tasks (see Table 3.1). This might be
a problem for users who cannot wait and want to obtain the results immediately.
To reduce this latency, real-time crowdsourcing techniques [24] might be effective.
In addition to the cost in terms of time, monetary cost is also a problem, as some
users might feel the price of our analysis is too high. We paid 4 USD in total
to crowd workers for the shader application, which we believe to be a reasonable
price.

3.6.3 Design Implication

Learning the personal preference of the users could be an interesting future direc-
tion, and we will seek such a method in Chapter 4. Because human preferences
differ depending upon individuals and cultures, considering clusters of crowds
[69] could improve the quality of goodness functions. To lower the monetary and
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timing costs of crowdsourcing, it could be helpful to sample parameter sets in a
progressive way and dynamically change the tasks [141]. Web design and presen-
tation slide design contain many discrete parameters such as fonts so they are out
of our scope, but considering such discrete parameters is an important direction
to take in our future work. Similar to Attriblt [39], we feel that considering two
or more types of goodness criteria for a design task could enable more useful
interfaces. Generating a small number of new sliders by using dimensionality
reduction techniques is also a potential focus of our future work.
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Chapter 4

History-Based Parameter Preference
Estimation

In this chapter, we describe the history-based estimation method, which learns
“personal” aesthetic preference from the editing history of a target user and then
supports the user to manually explore the design space by using the estimated
preference. To investigate this concept and validate its effectiveness in practical
scenarios, we focus on photo color enhancement application, specifically, the sce-
nario that a photographer has tens of or hundreds of photographs to be enhanced.
To support this repetitive task, we present a new workflow for color enhancement,
called self-reinforcing color enhancement, for effectively gathering and utilizing
editing history. In this workflow, the system implicitly and progressively learns
the user’s preference by training on their photo editing history, which means that
the more photos the user enhances, the more effectively the system supports the
user. Based on this workflow concept, we present a working prototype system
called SelPh, and describe the algorithms to implement this system. We also
report the results of a user study for investigating how photographers use this
system in the targeted scenarios.

4.1 Introduction

In Chapter 3, we investigated how to estimate a “general” preference distribu-
tion by using crowdsourced human computation. Knowing such general trends
is useful for designers in many scenarios, such as the case of designing a visual
advertising for general audience. On the other hand, some designers or artists
might have highly personalized preference, and it may be more effective to support
them with estimating their personal preference in some situations; for example,
a skilled designer might have a specific style, and want to design a set of visuals
consistently based on the style. In this chapter, we are aimed at seeking a compu-
tational design method that estimates such “personal” preference for facilitating
design exploration.

As the source of personal preference data, we use the editing history of a
single user. However, unlike crowdsourced data generation, editing history cannot
be generated on demand. Thus, we need a specialized workflow for effectively
gathering and utilizing editing history. To investigate this workflow concept and
validate its effectiveness in practical scenarios, in this chapter, we will focus on
the photo color enhancement scenario. More specifically, we consider the scenario
that a photographer has tens of or hundreds of photographs to be enhanced.
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Figure 4.1: Illustration of our workflow, named self-reinforcing color en-
hancement. As more photos are enhanced by the user, the system implicitly and pro-
gressively learns the user’s preferences and, as a result, the system is able to support the
user in an increasingly effective manner.

When photographers enhance the color of a photo, they need to manually
adjust many sliders such as brightness, contrast, and saturation. For skilled pho-
tographers, this approach is satisfactory when they have only a few photographs.
However, if they have tens of or hundreds of photos to edit, manually adjusting
every photograph independently would be an onerous task. This scenario often
arises when, for example, a photographer returns from a long journey with a
camera and wants to upload a photo album to a website.

One possible solution to avoid this tedious task is to use fully-automatic color
enhancement (auto-enhancement) to batch the whole process. Commercial soft-
ware often provides an option to perform this. However, there are several limita-
tions associated with this solution. First, the auto-enhancement functions even
in recent commercial software do not satisfy all users because every person has
different preference and they do not reflect personal preference [71]. Second,
even if personalized auto-enhancement (e.g., [70, 71]) is available, there are still
some non-negligible reasons why photographers find this fully-automatic solution
unsatisfactory. For example, even state-of-the-art auto-enhancement algorithms
cannot satisfactorily edit some types of photos, such as ones where highly se-
mantic aesthetics are involved. Moreover, even if the auto-enhanced photograph
appears satisfactory, photographers might still prefer exploring other possible
enhancements by themselves to confirm that it is the best indeed, rather than
blindly trusting the auto-enhancement. As a result, manually visiting every pho-
tograph is inevitable in this scenario.

We investigate a method of supporting this manual repetitive enhancement.
The goal of this task is for the user to subjectively assess every enhanced pho-
tograph as being optimized, i.e., aesthetically best. To determine whether this
goal is met, the user has to view all of the photos and make independent de-
cisions on each one. To facilitate this, we present a new photo enhancement
workflow, named self-reinforcing color enhancement, where the system implicitly
and progressively learns the user’s personal preference from editing history. As
the system learns the user’s preference, it supports color enhancement more ef-
fectively (Figure 4.1). In contrast to most machine learning-based approaches
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Figure 4.2: Screen capture of our working prototype system, named SelPh.
The left top part is the preview widget that shows the currently-enhanced photo. The
left bottom part is the reference photo widget that shows already-enhanced photos as
reference. The right part is the control widget that provides functions for supporting
efficient color enhancement.

[70, 26, 35, 71], in our workflow the user does not need to consider the train-
ing of the system as a separate preparation process. Instead, the user enhances
photographs mostly as usual, but with help from the self-reinforcing system.

Based on the concept of self-reinforcing color enhancement, we present a work-
ing prototype system, named SelPh (Figure 4.2). The ability of the system to
perform self-reinforcement enables it to provide several useful support functions
to the user. By using our system, we conducted a user study to investigate how
photographers enhance a collection of photos (e.g., a photo album) with a self-
reinforcing system, how effectively the self-reinforcement approach works, and
the overall level of satisfaction with the system. This chapter reports insights
from the user study; for example, all the participants agreed that the workflow
with a self-reinforcing system is preferable to the traditional one, and all the par-
ticipants found the support functions of SelPh to be satisfactory. Participants
particularly liked the visualization of confidence of preference estimation, saying
that it makes the system more trustworthy and enjoyable. We also discuss the
design implications revealed by the study.

The main contribution provided in this chapter is the investigation of a novel
computational design method that learns personal preference from editing history
and facilitates manual design exploration. This method is tested on the workflow
of self-reinforcing color enhancement for aiding repetitive manual enhancement.
More specifically, we offer the following three contributions in this chapter:

System design. We designed a prototype system, SelPh, which offers five user

support functions, including enhanced sliders and adaptation based on con-
fidence of preference estimation.
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Algorithms. To enable these functions, preference estimation and interaction
techniques are combined into a system; a new joint-space formulation is
introduced, as well as a non-trivial combination of machine learning tech-
niques.

User study. We conducted a qualitative user study by using SelPh and obtained
various implications for designing learning-based systems in general. To
the best of our knowledge, this is the first study that investigates how
photographers enhance photos with a self-reinforcing system.

4.2 Related Work

Since we specifically focus on the scenario of photo color enhancement of many
photographs in this chapter, here we review related work specific to this chapter
that were not detailed in Chapter 2, to clarify our contributions.

4.2.1 Manual Photo Color Enhancement

Photographs can be enhanced either by interactive methods or automatic meth-
ods. Shapira et al. [128] presented an interactive method for recoloring, which
considers spatial conditions (2D distributions) of colored pixels in addition to
the colors themselves, which enables complex color manipulations. Histomage
[40] also provides interactive tools for color enhancement, which enable the user
to easily and efficiently select spatially varying pixels. In contrast to these ap-
proaches, our current method does not take such complex spatial conditions into
account; rather, our interest is the scenario where a large number of photographs
require enhancement.

The function provided in Adobe Photoshop Elements called Auto Smart Tone
[11] is conceptually related to our approach. Although it is named “auto,” the
user is expected to manually fix the suggested auto-enhancement for each photo.
The system learns from the user’s enhancement, and then uses this learning for
suggesting improved auto-enhancement for a new image. This can thus be con-
sidered to be self-reinforcing photo color enhancement. Our work makes several
contributions on top of this. Our novel formulation for learning users’ prefer-
ences (e.g., the joint-space formulation) can be used to develop support functions
beyond auto-enhancement, including enhanced sliders and confidence values of
preference estimations. As well as developing the system, the other key contri-
bution is the first user study of self-reinforcing systems.

4.2.2 Automatic Photo Color Enhancement

It is often considered (e.g., [35]) that auto-enhancement algorithms used in most
packages are based on simple heuristics such as histogram stretching, which
cannot work for complex cases. To improve the quality of auto-enhancement,
machine-learning techniques are often used [35, 71, 165], of which the most rele-
vant is the personalized auto-enhancement proposed by Kapoor et al. [71]. In this
formulation, the user trains the system by manually enhancing a set of carefully-
selected training photos, and then the system provides an auto-enhancement
function that reflects the user’s personal preference. Here, the training phase
and the execution phases are completely separated, and it does not provide any
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support for manual editing. Although our work makes partial use of a similar un-
derlying technique (i.e., metric learning), the interaction workflow is completely
different as there is a seamless transition from training to task execution. Our
main contribution is in the investigation of this paradigm and the functions to
support the seamless transition. In addition, we newly introduce algorithms to
enable our support functions, including an algorithm to compute confidence val-
ues that are used to adjust the interface behavior, and a joint-space formulation
that is necessary for enhanced sliders.

HaCohen et al. [59] presented a method to automatically achieve consistency
within a collection of photos. This method also allows users to manually correct a
small number of photos and then automatically propagates the correction to the
other photos in the collection. Berthouzoz and her colleagues [56, 26] presented
a method to create content-adaptive photo manipulation macros for batching
the process. Similar to ours, this method learns the relationship between photo
features and user-specified parameters. Their goal is to enable automatic batch
enhancement of a large set of photos, and they do not aim at supporting one-
by-one manual editing. Jaroensri et al. [65] presented a method to automatically
predict the acceptability of a given photo enhancement. Their model is computed
using dataset obtained via crowdsourcing in advance, while ours is computed
progressively using the personal editing history. Additionally, no previous work
evaluates how self-reinforcement can be used to improve the user experience with
manual enhancement of individual photos.

4.2.3 Demonstration-Based Techniques

Our method learns the user’s preference from the user’s demonstration. This
can be considered as a derivation of programming by demonstration [47, 81, 88].
The concept of programming by demonstration has been examined in previous
research on the automation of photograph editing [56, 26]. It is also incorporated
into commercial software such as the macro creation in Photoshop (called Ac-
tions) [12]. While they aim at automating tasks, our focus is to support manual
tasks. Also, they usually require explicit training or authoring phases, while our
approach seamlessly integrates training and task execution phases. Another do-
main of demonstration-based techniques is adaptive user interface [53, 51], which
adapts to the user based on the user’s behavior and context to improve usability
and performance. While our system also adapts to the user, we aim at facilitating
open-ended creative tasks, rather than improving usability of the interface.

4.3 Self-Reinforcing Photo Enhancement System

This section describes our prototype system, called SelPh. SelPh was designed
based on the concept of self-reinforcing color enhancement. The underlying al-
gorithms will be described in the next section. Figure 4.1 (b) shows the user
interface of SelPh. The left top part is a preview widget that shows the currently-
enhanced photo. The left bottom part is a reference widget that shows already-
enhanced photos for reference. The right part is a control widget that provides
functions for color enhancement. SelPh’s basic functionality comprises six slid-
ers that adjust enhancement parameters: brightness, contrast, saturation, and
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color balance with respect to red, green, and blue. SelPh also provides five user
support functions enabled by the self-reinforcement.

User interaction proceeds as follows. First, the user imports all the target
photos into SelPh. Then, SelPh displays the first photo, and the user starts
enhancement. Once the user is satisfied with the enhancement result, the user
pushes the “next” button, and then the next photo appears. This procedure is
repeated until all the photos are enhanced. At the beginning of this repetition,
the supports by SelPh are not provided or are not very effective; however, as this
repetition proceeds, SelPh becomes more and more confident about its preference
estimation and the supports become more and more effective. We will describe
this behavior with an example later.

4.3.1 User Support Functions

Our self-reinforcement enables the following five functions to be made available
to the user:

Visualization of goodness distribution on sliders. The system includes the
VisOpt Slider interface presented in Chapter 3, where the system provides
a colorful “bar” along each slider. A heat map is displayed to show the
distribution of “good” parameters for each bar (Figure 4.3 (a)), where the
red (blue) color indicates that it is a good (bad) parameter choice. This
colorful visualization is expected to help the user to explore the parameter
space more efficiently.

Interactive optimization of slider values. In addition to the visualization,
the VisOpt Slider provides an interactive optimization function. When this
function is enabled, as the user adjusts a slider value, all the other slider
values are simultaneously optimized so that collectively the sliders values
give better overall result. This function is useful for getting away from
meaningless design spaces, thus reducing the user’s effort during his or her
exploration.

Variable confidence value. SelPh computes a value called confidence value.
This indicates the confidence, or the certainty, of the estimation of the user’s
preference with respect to color enhancement. This confidence value is used
to adjust the visualization and optimization functions. For visualization,
the system modifies the color scheme as shown in Figure 4.3 (b). For
example, when the confidence value is small, the color becomes monotonous
(Figure 4.3 (c)). This prevents the system from displaying low quality
estimation to the user. For optimization, the system adjusts the strength
of the automatic guidance so that more optimization is performed when the
confidence value is large, and less is performed when the confidence value
is small.

Auto-enhancement. SelPh provides an “auto-enhance” button. Pressing this
button automatically sets all the sliders values to the estimated optimal
parameters. This optimization is computed using the preference model
learned from the user’s editing history. As noted, auto-enhancement cannot
always work well; however, as our auto-enhancement adapts to the user’s
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Figure 4.3: Color scheme of the visualization on sliders. (a) Heat-map visual-
ization on sliders (conf. = 1.000). (b) Extended color scheme using the confidence value.
(c) Visualization with low confidence (conf. = 0.216).

Target Reference photos Target Reference photos

Figure 4.4: Examples of suggested reference photos. The system shows the
already-enhanced photos sorted by the similarity to the current target photo.

preference, it is expected to provide a reasonable starting point for further
exploration.

Reference photos. When a collection of photographs is enhanced, consistency
among the enhanced photographs must be ensured [59]. To facilitate con-
sistent photo enhancement, the system shows the user reference photos,
which are the already-enhanced photos adaptively sorted by the estimated
similarity to the photo that the user is currently editing. Figure 4.4 shows
examples of reference photos. Note that the similarity between photos is
personalized; i.e., it is learned from the user’s editing history.

Figure 4.5 shows an example sequence of color enhancement performed by
SelPh. For the first and second photos, no user support is provided because the
system does not have enough data for reinforcement. From the third photo on-
wards, the guidance functions are provided. The confidence value increases from
the third to the fifth photos (0.359, 0.760, and 0.785). As these photos are simi-
lar to each other, the system is able to estimate the user’s preference effectively.
However, for the sixth photo, which is quite different from any of the photographs
that have already been enhanced, the confidence value decreases (0.109), because
it is difficult for the system to estimate the enhancement preference based on the
previously enhanced photos. For the seventh and eighth photos, which are similar
to the sixth photo, the system successfully estimates the enhancement preference
with higher confidence (0.432 and 0.865).

4.4 Algorithms

4.4.1 Overview of Self-Reinforcement Procedure

Every time the user finishes an enhancement of a photograph and then pushes the
“next” button to go to the next photo, the system computes the self-reinforcement
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Figure 4.5: An example sequence of color enhancement using SelPh.

The “nex.t” button Support the user’s The next photo appears.
is pUShV color enhancement ‘\
Update the Update the photo Update the
. . —> —>
distance metric feature space preference model

Figure 4.6: Overview of the self-reinforcing procedure. The yellow box is the
design session, and the gray boxes are the self-reinforcing sessions.
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procedure as shown in Figure 4.6. This procedure consists of the following three
steps:

Step 1: Update the distance metric of photographs. The system learns
the distances, or dissimilarities, between photographs based on the user’s
past enhancement history so that the user’s personal preference is reflected.

Step 2: Update the photo feature space. The system learns personalized
feature vectors as descriptors of photographs. These are computed based
on the learned distance metric.

Step 3: Update the enhancement preference model. The preference model
for estimating the quality of the enhancement is updated based on the
learned photo feature space and the user’s past enhancement history.

It is observed that this procedure can be computed in less than 40 milliseconds
with maximum 50 photos (MacBook Pro with 3 GHz Intel Core i7). After the
computation of this procedure, the next photo is loaded and shown to the user,
with the updated user support functions. In the following subsections, we describe
these three steps, and then show the way these techniques are used to enable the
user support functions.

Assume that the user has just pushed the “next” button. Let m be the number
of already-enhanced photos, I; is then the i-th photo image, and x; € X = [0, 1]"
is the enhancement parameter set that the user specified for I;. The value n

is the number of parameters (in our case n = 6), and the slider’s minimum
and maximum values are mapped to 0.0 and 1.0 respectively, and xPeutral —
[0.5 --- O.5]T is a “neutral” parameter set that does not change the photo

appearance. Given the data D = {(x;, ;) }I";, the goal is to estimate the user’s
preference of enhancement for the next photo I,1.

4.4.2 Distance Metric Learning of Photos

The goal in this step is to learn an appropriate distance metric for photos from the
available data D. This problem can be seen as a derivative of well-studied metric
learning techniques [80]. In our case, the goal is to learn a distance function
d(I;, I;) between an arbitrary pair of photos.

For this purpose, we mostly follow the method presented by Kapoor et al.
[71]; the distance metric is optimized so that the distances between photos are
as proportional to the distances between associated parameters as possible. The
distance function d is represented as a weighted sum of 38 types of non-linear dis-
tances between low-level photo features, including the symmetric KL-divergence
between intensity histograms. The reader is encouraged to consult the original
paper for details. Let w € R3® be the weights that parameterize the distance
function. The weights w are computed by solving the minimization problem:

min ) {d(Li, I;w) — allx; — x|}, (4.1)
(i) e{(ab) [1<a<b<m}

where a > 0 is a parameter that determines the relative scaling between the
distances of parameters and those of photos. Here, we slightly modified the
original formulation by introducing «; the original formulation is the special case

46



4.4. Algorithms

Figure 4.7: Visualization of a learned photo feature space computed by the
metric learning and embedding. This space is updated based on the user-provided
parameters each time the “next” button is pushed.

where o = 1.0. We empirically found that a value of « € [1.0,5.0] works well, and
we chose a = 3.0 for all the examples. This minimization problem is solved using
the L-BFGS [89], a local gradient-based optimization algorithm, provided in the
nlopt library [66]. We observed that this minimization takes only negligible time,
e.g., typically 10-30 milliseconds for m = 50.

4.4.3 Photo Feature Space Computation

Having found an appropriate metric in the previous subsection, the distance
between any pair of photographs can now be measured. Based on this distance
metric, we define appropriate coordinates for any photos, i.e., positions of photos
in a Euclidean space. This operation of assigning coordinates in a particular space
to elements is called embedding. To this end, we use metric multidimensional
scaling (metric MDS) [46], which computes positions of target elements in a k-
dimensional Euclidean space, given distances between them. In this work, we
specify k = 5. We embed the already-enhanced photos I1,..., I, and the next
photo I,,4+1 into the k-dimensional space. We refer to the resulting Euclidean
space as learned feature space, and the position of I; as the learned feature vector
f; € R¥. Figure 4.7 shows an actual result of embedding 15 photos, where k = 2 is
specified just for visualization purpose. It denotes that a closer pair of photos in
this learned feature space is likely to be provided with more similar enhancement
parameters, and vice versa.

Other algorithms such as Isomap [142] can also be used here. However, since
this embedding is performed every time, it needs to be efficient. Thus, we chose
the simple and fast metric MDS in our implementation rather than Isomap.
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Figure 4.8: Comparison of goodness function definitions. (a) In typical prefer-
ence learning approaches, the goodness is learned in feature spaces. (b) Some methods
for facilitating parameter tweaking learn the goodness in parameter spaces. (c¢) In this
work, the goodness is learned in the joint space of the features and the parameters.

4.4.4 Enhancement Preference Model
Joint-Space Formulation

As the computational model of photo enhancement preferences, we formulate the
goodness function of color enhancement as

g(x;f) € R, (4.2)

which returns a scalar-valued “score” (i.e., the goodness) of the enhancement
parameter x for the input photo whose learned feature vector is f. For example,
given a target photo whose learned feature vector is f, the goodness function
g(x; f) would return a large value if the enhancement parameter set x provides a
good enhancement, and return a small value if it provides bad one.

To integrate these two different spaces, the parameter vector space x and the
learned feature space f, we introduce a higher-dimensional joint space of these
two spaces:

x = m € R™"H, (4.3)

and then formulate the goodness function in the joint space, i.e.,
g(x;f) = g(x') e R. (4.4)

Figure 4.8 shows a concept-level comparison of the goodness function defini-
tions between previous ones and ours. Many computational aesthetics methods
(e.g., [124, 72, 96]) consider the relationship between the feature space and the
goodness value (Figure 4.8 (a)). Most of these papers discuss the selection of
features or the learning algorithms required for appropriate assessment. Some
methods to facilitate design parameter adjustment (e.g., [139] and the crowd-
powered estimation method described in Chapter 3) analyze the parameter space
and derive a distribution of “good” parameters (Figure 4.8 (b)). In contrast, this
work considers both the feature space and the parameter space jointly (Figure 4.8
(c)). This is the key to facilitating parameter adjustment for new photos that
have not been analyzed directly. As a concurrent work, Yumer et al. [166] pro-
posed a joint-space machine learning technique; other than this, to the best of
our knowledge, this specific formulation has not been previously investigated.
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Goodness Function Representation

Given the jointed data D' = {x]},, the specific goal in this step is to derive
a scalar-valued function g(x’) € R that is smooth and has higher values at the
points in D’. To compute such a function, we use the kernel density estimation
techniques, especially those from the work of Talton et al. [139]. The reader is
referred to the original paper for details. Essentially, the goodness function is
represented as a sum of m kernel functions:

m
g(x') = — > Ki(x). (4.5)
i=1
Here the Gaussian kernels K;(x') = N (x;x}, 3;) are used, where x/ is the i-th
data point, and X; is the associated bandwidth matrix. X; is computed adaptively
by using the techniques described in [23, 122]. In contrast to Talton et al.’s work,
we add a simple post-processing step on 3J;. In this step, the diagonal elements
are forced to be more than € > 0. This prevents unnecessary discontinuity in the
resulting function and enables smooth exploration. In SelPh, the value € = 0.02
was used.

4.4.5 Implementation of User Support Functions

Confidence value. The following assumption was made: if there is an already-
enhanced photo that is similar to the next photo, the goodness function can
provide a more accurate estimation of preference for the next photo. Based on
this idea, we empirically define the confidence value ¢ for a photo whose learned

feature vector is f as
£ ( ! )ﬁ 46
c(f)=——m——]) , .
( ) 1+ dcloscst ( )

where dejosest = min; ||f — f;|| is the distance between the next photo and its
closest already-enhanced photo in the learned feature space, and 3 is a parameter
to control the mapping curve. The fixed value § = 3.0 is used throughout this
work. By this definition, the confidence value becomes nearly 1.0 if there is an
already-enhanced photo similar to the next photo, and becomes nearly 0.0 in
the opposite case. Note that better formulations for the definition of confidence
might exist, but seeking it is not our goal and thus we would leave this as future
work.

VisOpt Slider interface. For the visualization and optimization functions,
the VisOpt Slider interface presented in Chapter 3 is used, where the input to
the interface consists of a design parameter vector x and a scalar-valued function
f(x) € [0,1]. To fit our formulation to that required to use the VisOpt Slider
interface, we define f(-) as

F(x) = m, (4.7)

9max — Ymin

where f is the learned feature vector of the target photo, which is fixed during
users editing. gmin, gmax are the minimum and maximum values, respectively,
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when f is fixed. These values are computed by the L-BFGS [89]. In addition,
we extend this VisOpt Slider to incorporate the confidence value. This is done
by modifying the color scheme (Figure 4.3 (b)) and changing the strength of the
interactive optimization.

Auto-enhancement. When the auto-enhancement function is called, the sys-
tem computes the optimal parameter set for maximizing g(x; f) where f is consid-
ered to be fixed. The result is then applied to all of the sliders. The maximization
problem is solved by the L-BFGS [89], typically taking less than 15 milliseconds.

4.5 User Study

We conducted a user study to investigate how photographers enhance photos
repetitively with a self-reinforcing system, whether and how they are satisfied
with the self-reinforcement approach and the user support functions of SelPh.
The task was color enhancement of a collection of photos (e.g., a photo album).
In this study, the efficiency of the enhancement was not evaluated. This is because
photo color enhancement is essentially a creative, open-ended exploration task.
Hence, it is difficult to quantify by the task-completion time. We consider that
the time taken to complete the task is not critical to the overall user experience.
The quality of the enhancement result was not evaluated either. In our target
use case, the resulting photos are considered to be always satisfactory for the
photographer.

4.5.1 Participants

We recruited eight skilled photographers (male: 4, female: 4) via several com-
munity mailing lists and Facebook. To ensure they had the desired skills, partic-
ipants were required to satisfy all of the following conditions:

e be majoring or had majored in Art or Design,

e own and be familiar with his or her own camera, not including casual cam-
eras such as smartphones, and

e be familiar with software for photo color enhancement such as Adobe Pho-
toshop CC [9].

As a result, three of the participants were students majoring in Art or Design
(Py,...,P3) and the other five were professional designers (Py, ..., P).

4.5.2 Procedure
Preparation: Photo Taking

First of all, we asked participants to take a series of photographs for the user
study. We asked participants to take 100 photographs in a single day by the
same camera, with either manual or automatic exposure settings. We allowed
participants to take photos in arbitrary times and places. In this study, we limited
the saving file format to JPEG, rather than RAW. We instructed participants to
assume that their assignment was to create a commercial photo book. The theme
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of the photo book was left to the discretion of the individual photographers but
example themes such as “travel,” “animal,” “wedding party of your friends,” and
“walking around” were provided. Finally, we told the participants not to enhance
any of the photographs prior to the commencement of the enhancement task.

Main Task: Photo Enhancement

We arranged a day to conduct the main task for each participant. The study
was performed in our laboratory or classrooms. First we asked them to fill a
preliminary questionnaire. This contained questions on biographic information
and their opinions of the auto-enhancement in commercial software. Then, we
introduced the systems for the study. We prepared two systems: SelPh and a
baseline system (Baseline), which simulates a simple, typical software interface.
Baseline was prepared by limiting the user support functions in SelPh. First, we
omitted both the visualization and optimization functions from sliders. Second,
as for the auto-enhancement, we removed the adaptation to individual photos
from that of Baseline; it simply takes the average of all the user-specified pa-
rameters from the previous edits to perform auto-enhancement. Finally, instead
of showing reference photos in the order of similarity, Baseline shows reference
photos in the original order; that is, the most recently-edited photos are shown
first as references.

Each set of photographs was divided into two sets of 50. The order of the photos
was retained so that the participant edited the photographs in the order in which
they were taken. Participants were asked to enhance each set of photographs
for each system. We instructed the participant how to use the system and its
functions before he or she started the editing task. We then asked them to
practice the system by editing 20 photos that we prepared. We alternated the
order that the participants used SelPh and Baseline systems to counterbalance
order effects. The participants were told to judge the speed to work at, and
quality to aim for, themselves, bearing in mind that they were aiming to create a
commercial photo book. The visualization and optimization functions, as well as
the auto-enhancement function, were optional; the participants were shown how
to toggle this functionality using check boxes and were told that they were free
to do so as they wished.

After completing the tasks of enhancing 100 different photos in total, 50 us-
ing Baseline and 50 using SelPh, the participants filled in another question-
naire. This post-task questionnaire contains questions about the approach of self-
reinforcement and the support functions available in SelPh. Then, we conducted
informal interview. The questions in the interviews were based on individual’s
answers to the questionnaires, and the enhancements they made. We conducted
this study in almost the same lighting conditions using the same display. The
overall process took around 3 hours for each participant.

4.6 Results

4.6.1 Preliminary and Post-Task Questionnaires

Our preliminary and post questionnaires were arranged on a 5-pt Likert scale,
where 5 corresponds to “strongly agree.” Figure 4.9 (Q1-Q3) shows the results
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Strongly Strongly
disagree agree

Q1 I often use the auto-enhancement in commercial
software.

Q2 [ am satisfied with the quality of the auto-
enhancement in commercial software.
When I have tens of photos, I would still enhance

Q3 each photo one by one, rather than batching the
process by using the auto-enhancement.

Q4 Visualization of goodness on sliders was useful 1
compared to the absence of it.

Q5 Interactive optimization of slider values was useful
compared to the absence of it.

Q6 Confidence value was useful. q

Q7 Auto-enhancement was useful in both systems. —

Q8 Auto-enhancement in SelPh was more useful than 1
that in Baseline.

Q9 Auto-enhancement in SelPh was more useful than ’
that in commercial software.

Q10 Reference photos were useful in both systems.

o1l Reference photos in SelPh were more useful than
those in Baseline.

Q12 As the task proceeds, I felt that the system learns my
preference or intent.

Q13 The learning result reflected my preference or intent.

Q14 It is preferable for the system to learn my preference f
or intent.

Figure 4.9: Results of the preliminary (Q1-Q3) and post-task (Q4-Q14) ques-
tionnaires. We used a 5-pt Likert scale. The error bars represent the standard deviation.

=S

of the preliminary questionnaire. These results validate the decision to work on
improving repetitive manual enhancement rather than a fully-automated batch
process. Figure 4.9 (Q4-Q14) shows the results of the post-task questionnaire
with respect to the self-reinforcement approach and the user support functions.
Overall, participants gave positive scores.

4.6.2 Feedback in Interview

Self-Reinforcement Approach

Compared to Baseline and traditional software where the enhancement of each
photo is independent, Pg said, “(SelPh) gave me a sense of continuity” between
each enhancement. He said he often began by “pushing the auto-enhancement
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button” and then “explored (the design space) from that point,” from which he
felt the sense of continuity in this repetitive task.

P said, “The functions based on the learning result, such as the visualization
on sliders, evoke the feeling of collaborating with another me.” Similarly, Ps
said that, using Baseline, he felt “lonely because I needed to do everything.” In
contrast, he said that, in SelPh, “there is interaction with the system” through
the support functions, thus “executing the task (with SelPh) was fun.”

Overall P; was satisfied with our system, but she had one concern, namely that
“(my decision) was sometimes too affected by the visualization,” while she was
partially positive about this effect because it is helpful in ensuring consistency
across edits. On the other hand, P, also mentioned a similar point but from
a more positive stance, saying that “This (visualization) is helpful (in making
decisions) when I have little confidence in myself.”

P5 mentioned that he often uses customizable filters in Aperture for preprocess-
ing photos, but “when the number of filters increases, it is tiresome to manage
them” because it is difficult to remember all the filters and find the most appro-
priate one. Compared to this, he said, “the method of (automatically) showing the
recommendation of parameters is effective for smoothly proceeding with a photo
enhancement task.”

Regarding the preference learning, P5; commented that “I felt that my prefer-
ences and tendencies are gradually learned, which was good.” Py said, “(SelPh)
reflected my tendency of tweaking two parameters in pairs,” and thus she realized
that “the system actually learned my preference.”

Visualization of Goodness on Sliders

As already mentioned above, P4 said that the visualization helps with decision-
making, especially in cases where he has little confidence in himself. This senti-
ment was echoed by Ps, P5, P;, and Ps. Also, P; mentioned that “(the visualiza-
tion was) useful for avoiding unnecessary exploration”; Ps agreed with this idea.
While Pg agreed that the visualization is helpful, he also said “The information
that I have to see during enhancement increased.”

Interactive Optimization of Slider Values

Py, P;, Py, and Pg agreed that the option to interactively optimize slider values
was useful because it allows efficient exploration. Py liked it also because “it is
not fully-automatic” but semi-automatic, where she “can still tweak each slider”
as she desires. Py also liked it because “Some common procedures that I have
in my head were (automatically) done (by this function) so I did not have to do
them by myself.” However, P; also said, “When I was doing fine-tuning, I had to
turn it off,” because it conflicted with her edits. She suggested that the problem
of having to turn the function on and off “can be easily solved by introducing a
shortcut key.”

Variable Confidence Values

All the participants agreed that the confidence value was useful. For example,
P- said, “By knowing the confidence, users can efficiently make decisions.” Ps
said that, according to the confidence value, she “decided to use or not to use the
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Figure 4.10: Photos that took a relatively long time to be enhanced during
the study. From left to right, the photos were taken by P;, P3, and P4, and the times
were 56, 37, and 33 seconds, respectively.

optimization and the auto-enhancement,” and that “when the confidence value is
relatively low, I did (explore the design space) by myself” rather than using the
support functions.

Some participants mentioned that the confidence value influenced other aspects
of the user experience. Ps commented, “I could trust the system more” by know-
ing the confidence of the estimation. P felt “a sense of closeness because it seems
human especially when the confidence value decreased.” Pj said, “it was good to
know the confidence because I could guess the thoughts of the system,” and she
“could empathize with the system.” Py also felt “humanity” from the confidence
value, and he said, “It was an enjoyable experience to do the task while feeling
that ‘This guy (SelPh) failed to guess what I want to do!”” when the confidence
value decreased.

Auto-Enhancement

P5 commented that the auto-enhancement in Baseline could make the design
“approach a little better, but it is still far (from the best design).” He agreed that
the auto-enhancement in SelPh was better than that in Baseline, and said that
he “used it (as a starting point) for further exploration.” Py commented that,
compared to the auto-enhancement in SelPh, that in Photoshop “cannot reflect
my intent” and “only provides a safe enhancement.” Pj3 said that, typically when
using Photoshop, “I rarely use the auto-enhancement,” because “usually it does
not fit my preference.” On the other hand, she used the auto-enhancement in
SelPh for about half of photographs during the study. She agreed that she “would
use the auto-enhancement if it learns from my past edits.”

Reference Photos

P, and other participants agreed that the reference photos helped them to edit
the photographs in a consistent manner. She also commented that, when making
an adjustment, references were helpful in avoiding being “overly influenced by
machine (the system recommendation)”. On the other hand, some participants
(Py, Ps, P7, and Pg) did not agree that they made use of the reference photos
during the study.

Time-Consuming Photos

Figure 4.10 shows some of photos that took relatively longer to edit during the
task execution. We asked participants why these photos took longer to edit than
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the others. P; said that she wondered “whether the sky should be completely
‘white-out’, or should retain its texture,” so “I had to explore a lot” to enhance
this photograph appropriately. P; said that he “intended to take a special direc-
tion” regarding the sunlight filtering through the trees. P, mentioned that he
wanted to “balance the blue in the sky with the red in the ground.” To do so,
he adjusted the green slider as well, to ensure balance between the blue and red
sliders. These statements show that the exploration time is significantly depen-
dent on the contents of photographs. Thus, it is not plausible to evaluate the
effectiveness of SelPh by simply using the task-completion time.

Other Comments

P3; and Ps wanted the option to control which dataset would be used for learning
and supports based on particular use cases. Py said that she changes the atmo-
sphere of photos according to the clients, for example, “(photos in) medicine-
related and musical instrument-related web pages are different in saturation and
color,” and thus “it is very helpful if I can switch (the datasets) (based on
clients).” P, commented that, when finishing the enhancement of 50 photos
with SelPh, he “wanted to re-visit some of the already-enhanced photos, with
fully-trained user support functions.” This idea was also mentioned by Ps, Ps,
and P6.

4.6.3 Quantitative Results

Although the goal of this study was to obtain qualitative feedback, we also
recorded some quantitative variables such as the task-completion time and the
amount by which the slider values were modified by mouse drags. Figure 4.11
(Top) show the mean task-completion time and the mean slider-edit distance.
We refer the phrase ‘the slider-edit distance’ to the total amount of slider move-
ments that were made by mouse drags, where the distance 1.0 corresponds to
the width of a slider. The overall average of the mean task-completion time
was 24.4 [sec] in Baseline and 17.0 [sec] in SelPh. The overall average of the
mean slider-edit distance was 2.35 in Baseline and 1.05 in SelPh. The mean
task-completion time of SelPh was marginally smaller than that of Baseline
[p < .10, Wilcoxon signed-rank test], and the mean slider-edit distance of SelPh
was significantly smaller than that of Baseline [p < .05, Wilcoxon signed-rank
test]. Figure 4.11 (Bottom) shows the task-completion time and slider-edit dis-
tance sequences through 50 photos with SelPh, by P, and P;. As for preference
learning performance, we recorded the prediction errors, i.e., the L?-norms be-
tween the predicted optimal parameter sets and the user-provided ones, and
the confidence values. The mean prediction error in each editing sequence was
{min = 0.05 (P3), max = 0.26 (FPg),mean = 0.11}. The mean confidence value
was {min = 0.18 (FPs), max = 0.65 (P3), mean = 0.46}. In addition to the predic-
tion accuracy, these data also indicate strong differences between individuals; Ps
was the most difficult to predict among the participants (thus the system tended
to have the lowest confidence) and, on the other hand, Ps was the easiest (thus
the highest confidence).

When participants were using SelPh, they chose to use the auto-enhancement
feature for 83.0% of the photographs. We did not record how often the interactive
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Figure 4.11: Quantitative results. (Top) The mean completion time and slider-edit
distance per photo. (Bottom) Series of the completion time and slider-edit distance.

slider optimization was actually used during exploration, but the check box was in
the “checked” state for 62.8% photographs when the “next” button was pushed.
Similarly, the check box for the visualization function was in the “checked” state
for 100% photographs when the “next” button was pushed.

4.7 Discussion

4.7.1 Summary of User Study

e All the participants were satisfied with self-reinforcing color en-
hancement. This was validated by responses to the post questionnaire
items (Q12-Q14) and by the feedback comments given in the interview. We
obtained positive comments compared to both fully-automatic and fully-
manual approaches.

e All the participants were satisfied with the support functions.
This was validated by questions (Q4-Q10) of the post-task questionnaire.
While some participants were indifferent to the reference photo function,
other functions were overall rated highly positively.

e SelPh is useful for avoiding unnecessary exploration. Participants
explicitly mentioned this aspect. Also, compared to the baseline condition,
the mean slider-edit distances significantly decreased when the participants
were using SelPh.

e SelPh is useful for making decisions efficiently. According to the
participants’ comments, this is true especially when users are not confident
in themselves.

e SelPh affects decisions. A few of the participants were aware of this ef-
fect. It is possible that the decisions of other participants were also affected,
but unconsciously.
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e The inclusion of the confidence value renders SelPh more helpful.
Many participants were excited about the confidence value, which they
found very useful. For example, depending on the confidence, a user can
decide whether he or she first applies the auto-enhancement, or adjusts
sliders from the beginning.

e The inclusion of the confidence value makes SelPh more trust-
worthy and enjoyable to use. This was the effect that we found most
interesting. The confidence value gave the system a sense of humanity, and
also gave participants a sense of interaction and collaboration with the sys-
tem. This facilitated trust between the users and the system, and helped
users to take more enjoyment.

4.7.2 Design Implications

Several lessons for further developing a self-reinforcing color enhancement system
can be learned from the study. We believe that these lessons are also applicable
to the design of systems that use machine learning in general.

o [t is preferable to show users what the system is thinking of, rather than to
make the system a “black box.” In the study, the confidence value played
this role; it helped users with the editing task, and also made the system
more trustworthy and enjoyable to use. Showing “why the system thinks
s0” is a possible future direction in this aspect.

e The workflow should be semi-automatic rather than fully-manual nor fully-
automatic. For example, participants liked the interactive optimization of
slider values because, in addition to guiding slider values automatically,
this optimization allows the user to retain the freedom to adjust each slider
individually.

e Rather than guiding the user to a possible best design, enhancement sys-
tems should support the user’s own exploration of the design space. From
our observations and the feedback by P; and Pg, we found that photogra-
phers often manipulate sliders back and forth. This helps them to be sure
that they have found a good design.

e In practice, photographers enhance photographs in different ways accord-
ing to their intended usage. Thus, unlike the setting in our study, the
system has to support a function to switch between several modes for self-
reinforcement.

4.7.3 Limitations

User study method. We conducted the user study to collect initial feedback
from participants, thus the method is not comprehensive and has several limita-
tions. For example, we assumed that the same person takes photos and enhances
them, but in practical usage, it is possible that different persons work on them
separately. In addition, we required participants to enhance photos only in a lin-
ear order and disallowed revisiting previous photos for balancing the conditions
across participants. We prepared our baseline by simply limiting the user support
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functions of SelPh so that participants could easily notice the qualitative proper-
ties of SelPh. However, other baseline conditions are also possible and could be
useful for further investigation. Finally, the participants might have had a bias
towards SelPh because of novelty factor; this needs to be taken care of for more
rigorous evaluation.

Quantitative evaluation. As the focus of our study was on the qualitative
properties, quantitative aspects were not fully investigated. It is difficult to
evaluate the effectiveness of the self-reinforcement in terms of either the task-
completion time or the amount of mouse interactions; for example, Figure 4.11
(Bottom-left) reveals highly random variation in task-completion times during
the study. During the interviews, it was made clear that the difficulty of photo
enhancement and hence the time it takes to complete this task, is highly depen-
dent on the target photo’s properties, including context, elements, and subjects.
While we used an open-ended task, where participants could freely explore and
decide on the final appearance of photos, more concrete goals for enhancement
may need to be specified to achieve a more accurate quantitative evaluation. It is
also important to design the study in such a way as to reduce the learning effects
of participants and to ensure that the participants remain sufficiently motivated
throughout the study.

Simple global photo color enhancement. The current system only has
six parameters for color enhancement. This choice was based on previous work
[75], as a first step for investigation of self-reinforcing systems. Future system
should include more types of supported parameters (e.g., Highlights/Shadows,
parametric tonal curves [58, 59], and filters in Instagram) to see how this affects
performance. The current system is limited to global enhancement; therefore,
when a parameter is varied, it is varied for the entire image. Local enhancement
is important for achieving more detailed enhancement [128, 40].

Empirically-set parameters. In our algorithms, there are several empirically-
set parameters such as k, a, 5, and €. Although these parameters are not essential,
they might affect user experience, which was not fully investigated in the study.
A possibly better way is to set them using cross-validation, which is a future
work.

Accuracy of machine learning. There is a lot of scope for improving the
accuracy of the system’s predictions of user preferences. Our current implemen-
tation of distance metric learning uses only simple low-level photo features such
as color histograms, following a previous work [71]. Investigating the use of se-
mantic features such as object recognition [35, 85], local correspondences between
photos [58, 59], or generic features [96, 79] represents a promising future direction.

4.7.4 Future Work

Extension to multiple users. Our current implementation of preference learn-
ing is limited to a single user; thus a user enhances photos based on only his or
her own editing history. As some of the participants mentioned, it would also be
interesting to develop algorithms and interaction techniques to share the learning
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results among many users and utilize them in a collaborative manner [36, 71].
Relying on learned data from others may cause loss of a sense of “ownership and
achievement” [22] in the resulting enhancement; we consider that the high satis-
faction in our study was partially achieved by the fact that the learned data was
from the user herself. We need to carefully design such a collaborative system
considering this idea.

Other support functions. By using our self-reinforcement techniques, it is
possible to provide more user support functions that were not available in SelPh.
One interesting direction is to sort photos; it could be helpful to manipulate the
order of photos, rather than providing them in the original order. For example,
the system can always select the current-best-confident photo from the ones which
remain to be enhanced as the next target, for avoiding to work on low-confident
photos. On the other hand, the inverse order is also possible; the current-worst-
confident photo could always be selected so that the system can effectively learn
a user’s preference (i.e., active learning [126]). Another direction would be to
develop a suggestive interface [97] based on the learned preference model. When
a user has many photos to edit, they may want to simultaneously edit multiple
photos [58], where the learned distance metric between photos could be used to
propagate edits to similar photos.

Towards casual users. Although adjusting sliders is a popular interface for
skilled users, casual users might prefer alternative interfaces. Investigating a
combination of the self-reinforcement approach and a palette-based [38] or gallery-
based interface [97, 128] would be an important future work for casual usage.
Also, it is important to evaluate how casual users enhance photos with a self-
reinforcing system.

Other design domains. In this chapter, we focused on the specific scenario of
professional photo color enhancement to test the approach of learning personal
preference from editing history. While our approach was evidenced to be effective
in this scenario, it is an important future work to test our approach on other de-
sign domains. Our method relies on only a minimum amount of domain-specific
formulation (only the naive definition of feature vector of photographs), so ap-
plying our method for other domains should be technically easy. The challenge
is in the user experience design, i.e., how to effectively gather and utilize editing
histories without sacrificing good user experience.
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Chapter 5

Crowd-Powered Parameter Preference
Maximization

In this chapter, we describe the crowd-powered maximization method, a novel
method for maximizing the perceptual goodness of a visual design by using crowd-
sourced human computation. Specifically, we present a novel concept of crowd-
powered visual design optimizer, which queries human processors employed via
crowdsourcing to perform perceptual microtasks, and using the responses it pro-
ceeds the optimization to find the best parameter set. We also present the first
working implementation of this concept using a novel extension of Bayesian opti-
mization techniques, where the system decomposes the high-dimensional param-
eter tweaking task into a sequence of one-dimensional line search queries that
are easy for human to perform by manipulating a single slider. Our single-slider
manipulation microtask design accelerates the convergence of the optimization
relative to existing comparison-based microtask designs. We applied our frame-
work to two different design domains: photo color enhancement, and material
appearance design, and thereby showed its applicability to various design do-
mains.

5.1 Introduction

The goal in this chapter is to seek a computational automatic solution for param-
eter tweaking tasks in visual design; we envision that human perceptual “auto”
buttons are equipped in various design interfaces for automatically setting “best”
parameter sets (see Figure 5.1). The parameter set provided by this button can
be used, for example, as final products (enabling “batch” tweaking) or a good
starting point for further tweaking (reducing unnecessary exploration). This is
inspired by the auto buttons provided in photo color correction software such
as Adobe Photoshop CC [9] and GIMP [145]. They are, as far as we guess,
heavily based on domain-specific techniques (e.g., heuristics such as histogram
stretching or machine learning-based techniques [35]). In this chapter, we inves-
tigate how to enable similar functions in general applications without relying on
domain-specific knowledges.

As described in Chapter 1, we consider a parameter tweaking process as a
mathematical optimization problem where the perceptual (e.g., aesthetic) pref-
erence is used as the objective function to be maximized. That is, given n sliders
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Auto// Auto
A user pushes “Optimal” slider values
the “Auto” button are obtained

Figure 5.1: Our vision of perceptual “auto” buttons for design interfaces.
We investigate how to realize a human perceptual “auto” button that automatically sets
slider values so that the target design is aesthetically “best”.

to be tweaked, we are going to solve

x* = arg max g(x), (5.1)
xeX
where g : X — R is the goodness function, X = [0,1]" is the target design space,
and x* is the optimal parameter set which maximizes the aesthetic preference of
the target visual design. There are many challenges to automatically solve this
problem as we discussed so far in this thesis.

5.1.1 Existing Methods

Regression methods, such as the crowd-powered estimation described in Chap-
ter 3, estimate the shape of the function everywhere in X. However, our interest
lies only in the maximum of the function. Thus, formulating a method as opti-
mization, instead of regression, should be more straightforward. A method for
this direction has been proposed by Brochu et al. [33], where they constructed
a Bayesian optimization framework using pairwise comparison oracles; the user
is iteratively asked to select the better design from two candidates, and the can-
didates are selected strategically by Bayesian optimization techniques. Their
method is called a human-in-the-loop optimization in that the process of opti-
mization is converted into a series of interactive comparison tasks performed by
the user.

A problem with their comparison-based method is efficiency. It requires many
iterations (i.e., interactive comparison tasks) to reach an optimum. This is be-
cause very limited information (i.e., the relative order of two discrete samples) is
obtained from a single iteration. There is an extension of the original method for
reducing the number of necessary iterations by incorporating a domain-specific
data as prior knowledge [31]; however such data is not always available and not
suitable for on-demand use. Another limitation is that their implementation
is currently limited to a single user. The method converts a complicated com-
pound task into a sequence of simple tasks, so it has a potential to be used
in a crowdsourcing setting where many workers complete simple microtasks in
parallel. However, this possibility has not been investigated so far.
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Task: Choose the image that Task: Adjust the slider so that
looks better the image looks the best

Pairwise comparison task Single-slider manipulation task

Figure 5.2: Microtask design. (Left) Existing methods use pairwise comparison
microtasks. (Right) We propose to use single-slider manipulation microtasks, which
provide much richer information while the task difficulty is still comparable.

5.1.2 Contributions

To address these problems, we propose two extensions over Brochu et al.’s method
[33]. First, we propose a Bayesian optimization framework based on line search
oracles instead of pairwise comparison oracles; our framework decomposes the
entire problem into a sequence of one-dimensional slider manipulation tasks (Fig-
ure 5.2). This makes it possible to obtain much richer information in a single
iteration compared with a pairwise comparison of discrete samples and to reach
the optimum much more efficiently. The difficulty of this task is slightly greater,
but it is still comparable to the comparison-based task.

The second extension over the previous methods is to implement an optimiza-
tion framework using crowdsourced human computation instead of having the
user in the loop, which enables “semi-automatic” execution of the optimization
(though crowds interact with the system, the user experience is automatic). We
present a novel concept of a crowd-powered visual design optimizer, and we offer
the first implementation of this concept within the Bayesian optimization frame-
work based on line search oracles. Once the user submits a high-dimensional
design task to the system, it generates a sequence of single-slider manipulation
microtasks and deploys them to a crowdsourcing platform. Crowd workers com-
plete the tasks independently, and the system gradually reaches the optimal so-
lution using the crowds’ responses. Figure 5.3 illustrates this concept.

We demonstrate the effectiveness of our crowd-powered optimizer using two
different design domains: photo color enhancement with a 6-dimensional de-
sign space, and material appearance design based on parametric bidirectional
reflectance distribution function (BRDF) models with 3- and 7-dimensional de-
sign spaces. We also show that our slider-based method makes the optimization
converge faster and yields better solutions than comparison-based methods do,
both in a synthetic simulation and in an actual crowdsourcing setting.

Organization. The rest of this chapter is organized as follows. First, we intro-
duce the overview of existing Bayesian optimization techniques for completeness
in Section 5.2, based on which our framework is constructed. Then, in Sec-
tion 5.3, we describe a novel human-in-the-loop Bayesian optimization based on
line search oracles. We adapt this framework in the crowdsourcing setting in Sec-
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n-dimensional 1-dimensional
design space slider space

CrowdsourcP;/ - Crowdsource
Z.
k>
©00O
©00O \ ©00
\
Human processors / \ Line search microtask

(Crowd workers) / \ (Single-slider manipulation)

Figure 5.3: Concept of crowd-powered visual design optimization based on
sequential line search. To enable a button for running the crowd-powered search for
the slider values that provide perceptually “best” design, we present a novel extension
of Bayesian optimization, where the system decomposes the n-dimensional optimization
problem into a sequence of one-dimensional line search queries that can be solved by
crowdsourced human processors.

tion 5.4, and describe our crowd-powered visual design optimizer. In Section 5.5,
we demonstrate the results in two applications. In Section 5.6, our framework is
evaluated by comparing with existing comparison-based approaches. Finally, we
conclude this chapter with the limitations and future works in Section 5.7.

5.2 Background: Bayesian Optimization

In this section, we briefly introduce an overview of existing Bayesian optimization
techniques for completeness, based on which our framework is built. Readers are
encouraged to find more general and comprehensive introductions in [68, 32,
132, 127]. Here we only focus on the details that are necessary to discuss our
framework, which will be described later.

5.2.1 Overview

Suppose that A is a d-dimensional bounded space, f : A — R is an unknown
black-box function, and we want to find its maximum:

x* = argmax f(x). (5.2)
x€A

Suppose as well that the function value f(x) can be computed for an arbitrary
point x, but f(-) is an expensive-to-evaluate function, i.e., it entails a significant
computational cost to evaluate the function value. Thus, while there are many
optimization algorithms that can be used for solving this maximization problem
(e.g., the DIRECT algorithm [67]), here we are especially interested in making
the number of necessary function evaluations as small as possible.

Suppose that we currently have a set of ¢ function-value observations:

Dy = {(%i, fi) izt (5.3)
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where f; = f(x;). Intuitively, for each iteration in Bayesian optimization, the
next evaluation point x;41 is determined such that it is “the one most worth
observing” based on the previous data D;. Suppose that a : A — R is a function
that quantifies the “worthiness” of the next sampling candidate. We call this
function an acquisition function. For each iteration, the system computes the
maximization of the acquisition function to determine the most effective next
sampling point:

Xi+1 = argmax a(x; D). (5.4)
xeA

The following subsections explain how to model and calculate such an ac-
quisition function. Before introducing the detailed equations of the acquisition
function, we begin with a prior assumption put on the objective function, based
on which the acquisition function is calculated.

5.2.2 Gaussian Process Prior

In Bayesian optimization, the Gaussian process (GP) prior is often assumed on
f(+). According to [50], a GP is described as follows:

“Formally, o Gaussian process generates data located throughout
some domain such that any finite subset of the range follows a multi-
variate Gaussian distribution.”

This is expressed as
f(x) ~ GP(m(x), k(x,x")), (5.5)

where m : A — R is the mean function and k : A x A — R* is the covariance
function of the GP. When prior knowledges about f(-) are available, m(-) can be
set to reflect those knowledges (e.g., [31]). In this thesis, as we do not assume
any domain-specific prior knowledge, we simply set

m(x) = 0. (5.6)

For the covariance function representation, we use the automatic relevance deter-
mination (ARD) squared exponential kernel [117]:

k(x,x') = 0 12(1:(‘“_:”;)2 + 04126(x, %) (5.7)

X,X') = Xpy—= » ———— X, X .

) d+1 €Xp 9 v 922 d+2 ; )

where 8 = {Gz}flif are the model hyperparameters that should be determined

somehow, which will be discussed later, and (-, -) is the Kronecker-Delta function.
Since any data should follow a multivariate Gaussian distribution under the

GP prior, an unobserved function value f(x,) on an arbitrary parameter set x.

is considered to follow the distribution:

f K Kk
[f(x*)] ~N <0’ lkT k(x*,x*J) ’ (5.8)
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where
T

f= [fl fN] : (5.9)

T
k= [k(xox1) - K(xoxy)| (5.10)

k(xl,xl) k(Xl,XN>
K = : : (5.11)

k(xn,x1) -+ k(xy,xn)

Using some matrix algebra, we can derive
i) ~ N (KK k(x,, x,) - KTK 'K (5.12)

This equation provides a predictive distribution about the unobserved function
value, which follows a simple Gaussian distribution. We represent u(-) and o?(:)
are the predicted mean and the variance, respectively, i.e.,

p(x,) = kTK™f, (5.13)
0% (x:) = k(x4, %) — kKTK k. (5.14)

Note that we can use this predictive distribution as a means of scattered data
interpolation, although our goal is not interpolation. This usage is referred to
as Gaussian process regression (GPR). See the tutorial by Ebden [50] for this
direction.

5.2.3 Covariance Hyperparameters

To predict (-) and o2(-), the model hyperparameters 6 have to be determined.
Here, we consider to determine them using maximum a posteriori (MAP) estima-
tion, while other options (e.g., maximum likelihood estimation) are also possible.
Given the data D, the model hyperparameters are determined by maximizing the
posteriori distribution of 6:

OMAY = argmax p(@ | D). (5.15)
[

By applying Bayes’ theorem, we have

OMAP _ aro max {p(D | 9)?(9)}

0 p(D)
(

= argmax p(D | 6)p(6). (5.16)
6

From the definition of the GP prior, the conditional probability p(D | ) follows
p(D | 6) =N(f;0,K). (5.17)

The probability p(@) is an arbitrary prior distribution of 8. In this study, we
assume log-normal distributions for each hyperparameter:

o(0:) = {EN(1n0.500,0.10) (i=1,....,d+1) (5.18)

LN (1n0.005,0.10) (i =d + 2)
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Thus, we have
d+2

p(60) = [1 »(6). (5.19)

As the gradient of the objective function in Equation 5.16 can be expressed in
closed form (see [117]), this maximization can be efficiently performed by using
standard gradient-based optimization techniques, e.g., L-BFGS [89)].

5.2.4 Acquisition Function

So far, we have discussed computational tools for predicting unobserved function
values. By using them, the next sampling point is chosen. Intuitively, we want
to choose the next sampling point so that it is likely to have a larger value
(since we want to find the maximum) and at the same time its evaluation is more
informative (e.g., visiting a point that is very close to already visited points should
be less useful). To realize such properties, researchers have proposed several types
of acquisition function for choosing the next sampling point, including

e probability of improvement (PI),
o cxpected improvement (EI), and

e Gaussian process upper confidence bound (GP-UCB).

See [127] for detailed discussions. Among them, we adopt the EI criterion [102,
68], following the previous works [33, 31].

Let f* be the maximum value among the currently observed data. The acqui-
sition function based on EI is defined as

aEI(x; D) = E¢[max{f(x) — .0}, (5.20)

where f(-) is considered as a probabilistic variable that depends on the data D.
After some integral calculations, this can be analytically expressed in closed form
as

a”(x; D) = (fT — p(x))®(y(x)) + o (x)N (7(x); 0, 1), (5.21)

where v(x) = (fT — u(x))/o(x), u(-) and o(-) are the ones calculated in Equa-
tion 5.13 and Equation 5.14 using the MAP-estimated model hyperparameters
OMAP and ®(.) is the cumulative distribution function of the standard normal.
Since a®(-) can have multiple local maximums, we use the DIRECT algorithm
[67], which is a global optimization algorithm, to solve the maximization of this
acquisition function.

5.2.5 Example Optimization Sequences

Figure 5.4 shows example sequences of applying Bayesian optimization to one-
dimensional test functions. Intuitively, the next sampling point x*°*' is selected
such that both u(x"*') and o(x"®*') are large. Note that we do not intend
that u(-) eventually converges to f(-) because this is not a regression but an
optimization. For example, some regions remain uncertain (i.e., having large
o(+) values) but are not sampled even after several iterations; this is because they
are unlikely to contain the maximum. On the other hand, x* is expected to
converge to the maximum.
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Figure 5.4:
dimensional test functions. Each sequence proceeds from top to bottom. The gray dot
line indicates the unknown black-box function f(-), the red line indicates the predicted
mean function u(-), the blue line indicates the acquisition function a(-), the pink region
indicates the 95% confidence interval (i.e., [u(-) —1.960(+), pu(-) + 1.960(-)]), and the dots
indicate the observed data (the red one is the maximum at each moment). Note that
a(-) is scaled for visualization purpose.

Example sequences of Bayesian optimization, applied to one-
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5.3 Bayesian Optimization Based on Line Search Oracle

The standard Bayesian optimization in the previous section requires that function
values can be observed for any argument. In other words, it is based on a function-
value oracle. However, in our problem setting, it is not realistic to use a function-
value oracle for the perceptual goodness function g(-). For example, suppose
that you are asked to provide a real-valued goodness score for a certain visual
design; this task would be rather difficult without knowing all possible design
alternatives. This approach may result in unstable and inconsistent scoring even
within a single person. Furthermore, if we ask the same question of many crowd
workers with various backgrounds, this may be even worse.

For this reason, Brochu et al. [33] extended Bayesian optimization so that is
could use a function-value-comparison oracle instead of a function-value oracle;
their form of optimization iteratively queries a (human) processor about which
design is better in pairwise comparison of two designs. As we noted, a problem
with this solution is efficiency; it requires many iterations to reach an optimal
solution. The reason is that only limited information (i.e., a relative order of two
sampling points) is obtained by a single query.

In this section, we describe a novel extension of Bayesian optimization based
on a line search oracle instead of function-value or function-value-comparison or-
acles. The line search oracle is provided by a single-slider manipulation query;
human processors are asked to adjust a single slider for exploring the design alter-
natives mapped to the slider and to return the slider value that provides the best
design configuration. This oracle can be rephrased as function-maximization-in-
one-dimensional-space oracle; mathematically speaking, given a one-dimensional
subspace of the entire search space, this oracle provides a solution of a maximiza-
tion problem within this subspace.

Our framework is expected to be used in human-in-the-loop settings, e.g., cro-
wdsourcing in our case. We expect that exploring a multi-dimensional space
(i.e., adjusting multiple sliders that correlate with each other) is difficult and
intractable for (unmotivated) non-experts, while finding a best option from a
one-dimensional space (i.e., adjusting a single slider) is tractable and valid as a
microtask design in crowdsourced human computation.

5.3.1 Slider Space

We let human processors adjust a slider, 4.e., find a maximum in a one-dimensional
continuous space. We call this space the slider space. Technically, this space is
not necessarily linear with respect to the target design space X (i.e., forming a
line segment in X'); however, in this study, we will consider only the linear case for
simplicity and for the sake of not confusing the human processors by introducing
non-linearities.

At the beginning of the optimization process, the algorithm does not have any
data about the target design space X or the goodness function g(-). Thus, for
the initial slider space, we simply choose two random points in X and connect
them by a line segment.

For each iteration, we want to arrange the next slider space so that it is as
“meaningful” as possible for finding x*. We propose to construct the slider space
S such that one end is at the current-best position x™ and the other one is at the
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best-expected-improving position x™. Suppose that we have observed ¢ responses
so far, and we are going to query the next oracle. The slider space for the next
iteration, i.e., Sy11, is constructed by connecting

x;" = argmax p(x), (5.22)
XE{Xi}f\gl
xM = arg max all(x), (5.23)
XEX

where {x;}2*, is the set of observed data points, and j(-) and af'(-) are the
predicted mean function and the acquisition function calculated from the current
data. The calculation of u(-) and a™(-) is less trivial than in the case of standard
Bayesian optimization; we will detail it in the following subsections.

Optionally, we can enlarge the line segment with a fixed scale, e.g., 1.25. This is
for avoiding cognitive biases; human processors might feel uncomfortable choosing
the ends of the slider. Another reason is that the neighborhoods of x* and x™!
are each likely to be good and worth exploring. Moreover, to avoid meaningless
slider tweaking, we ensure that the length is not less than 0.25.

5.3.2 Likelihood of Single-Slider Manipulation Responses

Bradley-Terry-Luce model. In crowdsourced perceptual user studies, pair-
wise comparison tasks, also known as two-alternative forced choice (2AFC) tasks,
are frequently used. To model pairwise comparison responses from a probabilis-
tic viewpoint, many recent studies (e.g., [111, 168]) have used the Bradley-Terry
(BT) model [30]. For handling cases in which more than two options are involved,
the Bradley-Terry-Luce (BTL) model, which is an extension of the BT model,
can be used (see [146]). Suppose that there are m design options corresponding
to parameter sets P = {x;}~,, and the design corresponding to x; is chosen out
of the m options. We describe this situation as

x; = P\ {x;}. (5.24)

The BTL model describes the likelihood of this situation as

exp(g;/s)
p(x; =P\ {x; gitn) = ——"—+"—, 5.25
(J \{J}|{111) ?lleXp(gi/S) ( )
where g; denotes the goodness value on x;, and s is a scaling factor that affects
the likelihood; when s is smaller, the likelihood is more sensitive to the goodness
function values, and when s is larger, the likelihood becomes closer to 1/m and

less sensitive to the goodness function values. Here, we use a fixed value of
s = 0.01.

Modeling slider responses. To model the likelihoods of single-slider manip-
ulation responses, we propose to use the BTL model as follows. Let xhose® he
the parameter set that a human processor chooses from the slider space S con-
structed from x* and xP!. Also let S’ be a discretized form of S consisting of a
finite number of points including x"°%®. We describe this situation as

Xchosen . 8/ \ {XChOSGH}’ (526)
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chosen

and then apply the BTL model by considering that x is chosen out of
the finite number of options. In our current implementation, we define &’ =
{xchosen x+ xEI1 We tested several definitions of S’ that included more sampling
points, but we did not observe any significant improvement in the optimization
behavior; thus, we chose the minimal representation.

5.3.3 Data Representation

Suppose that we have observed ¢ single-slider manipulation responses so far. We
represent this data as

Dt = {X;:hosen - {Xz—‘i_—hx?gl}}gzlv (527)

where each xghosen, thp and X?_Il corresponds to a certain element in a set of V;

observed data points {xl}ZN:t1 Note that, when a new single-slider manipulation
response is added, we merge the same or very close points so that the set {Xi}lj-vztl
does not contain any duplicate points.

5.3.4 Inference from Single-Slider Manipulation Data

Let g; be the goodness function value at the data point x; (i.e., g; = g(x;)) and
g be an N-dimensional vector that concatenates the goodness values at all the
observed data points:

T
gz[gl o gN| - (5.28)

Unlike standard Bayesian optimization, in our case, the function values g are
latent; they are not explicitly observed, but rather implicitly inferred from the
single-slider manipulation responses D. As the goodness values g and the model
hyperparameters @ are correlated, we infer g and 6 jointly by using MAP esti-
mation:

(gMAP, 0MAY) = arg max p(g, 0 | D)
(g,9)
=argmax p(D | g, 0)p(g, )
(8.0)
= ar(g Ig)ax p(D|g,0)p(g | 0)p(0). (5.29)
g7

Since D and @ are conditionally independent given g, we have

p(D|g,0)=p(D|g). (5.30)

The conditional probability p(D | g) is calculated using the BTL model:

p(D|g) =[] o = {x 1, x"} | &) (5.31)
7

The conditional probability p(g | €) is calculated from the definition of the GP
prior:

p(g|8) =N(g;0,K), (5.32)
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Algorithm 1 Bayesian optimization based on line search oracle.
1: fort=1,2,... do

2 (gMAP @MAPY — compute_MAP_estimation(D;)
+

3 Xy = arginaXyecx,y Hi (X)

4 xP = arg max, . y ai’'(x)

5: Sy+1 = construct_slider_space (x;",x?l)

6 xfi‘isen = query_line_search(Si41)

T Dert = Dy U - {7 xE1})

8: end for

where K is the covariance matrix of this GP, which depends on 6. For p(6),
we assume a log-normal distribution for each hyperparameter as in the previous
section. As the derivatives can be analytically derived, this MAP estimation can
be performed by gradient-based optimization algorithms such as L-BFGS [89].

Once gMAP and OMAP have been obtained, we can compute the predictive
distribution of the goodness function values for an arbitrary argument, i.e., u(-)
and o(-), in the same way as in the previous section. Consequently, we can
compute the acquisition function a®!(-).

5.3.5 Example Optimization Sequence

Algorithm 1 summarizes the procedure of our Bayesian optimization framework
based on line search oracle. In line 6, the system queries a human. Figure 5.5
illustrates an example optimization sequence in which the framework is applied
to a two-dimensional test function and the oracles are synthesized by a machine
processor. The process begins with a random slider space. After several itera-
tions, it reaches a good solution. Again, as this is not regression, the predicted
mean function pu(-) does not converge to the goodness function ¢(-), which is the

key that enables it to find maximums efficiently.

5.4 Crowd-Powered Visual Design Optimizer

We define a crowd-powered visual design optimizer as a system that finds an
optimal design which maximizes some perceptual function from a given design
space and, to enable this, bases its optimization algorithm upon the use of crowd-
sourced human computation. In this section, we describe the first implementation
of a crowd-powered visual design optimizer based on the framework described in
the previous section.

User experience. We consider a scenario in which a user pushes a “Crowd-
source” button in design software for running the crowd-powered optimization
process, and then he or she obtains results without any further interaction, as
shown in Figure 5.3. For the user, this seems to be a fully automatic process;
indeed, he or she does not need to know that many crowd workers are involved
in the computation. Currently, the entire computation takes a few hours in our
proof-of-concept implementation, and minimization of this latency is out of our
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p() a(-) al-)

Figure 5.5: An example sequence of Bayesian optimization based on line
search oracle, applied to a two-dimensional test function. The iteration proceeds from
top to bottom. From left to right, each column visualizes the black-box function g(-)
along with the slider space S and the chosen parameter set x°"*°"  the predicted mean
function p(-), the predicted standard deviation o(-), and the acquisition function a(-),
respectively. The red dots denote the best parameter sets x* among the observed data
points at each step.
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No.1

Adjust the slider so that the teapots have as similar appearance as possible.

Reference image

Figure 5.6: A screen capture of the web interface for crowdsourced micro-
tasks. In this example, a reference image is shown in the left. The main image shown
in the right is dynamically updated according to the manipulation of the slider.

scope. Incorporating real-time crowdsourcing techniques [24] could be used to
reduce the latency.

Implementation details. We implemented a microtask platform that crowd
workers access through standard web browsers. Instead of generating visual im-
ages in real time on web browsers, our platform pre-renders a finite number of
images on the server by using uniformly sampled parameter sets along with the
slider space. These images are loaded by the crowd workers’ web browsers only
once when the page is loaded; then the shown image is dynamically updated
through slider manipulation in real time. Note that this strategy makes our
framework applicable for domains that entail high computational costs for ren-
dering images. To reduce cognitive bias, we set the initial slider tick positions
randomly.

Task deployment. We used CrowdFlower [2] as the microtask-based crowd-
sourcing platform. Other platforms, including Amazon Mechanical Turk [1], can
also be used. We paid 0.05 USD for each task. Figure 5.6 shows a screen capture
of the web page for microtasks.

Gathering multiple responses. As we noted, we assume that there exists
a common preference shared by crowd workers, i.e., the goodness function g(-).
Each crowd worker may respond with some “noise”, so averaging the responses
from a sufficient number of crowd workers should provide a good approximation
of the underlying common preference. To take this into account, we modify the
line search query in line 6 in Algorithm 1 as follows. In each iteration, the system
gathers responses from m crowd workers by using the same slider space (e.g.,
m = 5). After gathering the necessary number of responses, the system calculates
the median of the provided slider tick positions and uses it for calculating x<hose,
In the actual implementation, we deploy several additional tasks so that there
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Yol
High variance (0% = 0.080)

Figure 5.7: Visualization of slider spaces (for photo color enhancement) that
received lower- (Top) and higher-variance (Bottom) responses from crowds.

would be no long waits for unrealistically slow workers (e.g., over 30 minutes).

Quality control. Crowd workers might cheat or misunderstand their tasks
and thus make poor-quality responses. It is important to detect such low quality
responses and omit from data. This is called quality control, and various quality
control methods have been investigated [64, 83]. We adopt a simple quality
control approach based on redundancy; we duplicate each task and let each worker
do the same task twice, but the slider ends are inverted in the second time. If a
crowd worker submits contradicted values, i.e., the distance between the slider
tick positions is over 25% of the slider length, we consider that he or she is “lazy”,
so that we ignore the data.

Taking variance in responses into consideration. The variance of cho-
sen slider positions among crowd workers depends on the configuration of slider
spaces. Figure 5.7 shows examples of low- and high-variance queries. If there is
a perceptually clear maximum in the slider space, crowd workers tend to make
similar responses; on the other hand, if there is no clear maximum, crowd workers
tend to provide high-variance responses. In the latter case, the data likelihoods
should be less influential in the MAP estimation. To make our MAP estimation
variance-adaptive, we modify the scale factor s in Equation 5.25 as

s = aexp(bo?), (5.33)

where a and b are fixed parameters for controlling the behavior (we currently use
a = 0.01 and b = 50.0), and o2 is the variance of the chosen slider positions,
where the width of the slider is taken to be 1.0. When the variance is zero (i.e.,
all crowd workers provide the same responses), this becomes identical to the
unmodified formulation. When the variance is higher, s becomes larger, which
means the likelihood calculated by Equation 5.25 becomes less influential in the
MAP estimation.

Another implementation strategy. Another possible implementation of our
Bayesian optimization in crowdsourcing setting is to parallelize overall iterations
for each crowd worker; i.e., each worker iterates the single-slider manipulation
tasks several times and finds his or her optimal solution, and then to incorpo-
rate solutions from multiple workers somehow. This approach is more parallel
than our implementation and thus potentially shortens necessary timing costs.
However, in this approach, it may be difficult to detect “lazy” workers because
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Figure 5.8: Randomly enhanced photographs, showing the design space of the
photo color enhancement application.

each worker engages in completely independent tasks. Also, as the overall task
becomes less “micro”, which is generally undesirable because, e.g., it could cause
more uncertainty. Furthermore, the way of incorporating individual solutions is
non-trivial. We would like to leave this approach as a future work.

5.5 Example Scenarios and Results

We tested our framework in two typical parameter tweaking scenarios: photo
color enhancement and material BRDF design. In both cases, domain-specific
approaches are possibly more effective; however, we emphasize that our frame-
work does not rely on any domain knowledge (the application domains are not
limited to these two) and thus it can be applied to a wide range of scenarios. In
addition, ours can be combined with domain-specific approaches to build more
practical domain-specific systems (we leave this for future work).

Costs. All results shown in this section were generated with 15 iterations. For
each iteration, our system deployed 7 microtasks, and it proceeded to the next
iteration once it had obtained at least 5 responses. We paid 0.05 USD for each
microtask execution, so that the total payment to the crowds was 5.25 USD for
each result. Typically, we obtained a result in a few hours (e.g., the examples in
Figure 5.9 took about 68 minutes on average).

5.5.1 Photo Color Enhancement

We chose the following six parameters as the target design space: brightness,
contrast, saturation, and color balance with respect to red, green, and blue, as
used in Chapter 3 and Chapter 4. Note that our system can also handle tonal
curves by parameterizing them (e.g., [58]), though we did not use them in this
example. Figure 5.8 visualizes this design space. In the microtasks, we instructed
the crowd workers simply to adjust a slider until the image looked the best.

We compared our crowd-powered optimization with auto enhancement func-
tions in commercial software packages. Although such enhancement functions
heavily utilize domain knowledge, they still may not be robust enough to han-
dle certain classes of photographs, e.g., ones that require semantic interpreta-
tion. We compared the results of enhancement among ours (with 15 iterations),
Adobe Photoshop CC [9] (applying “Auto Tone” and then “Auto Color”) and
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Adobe Photoshop Lightroom CC [10] (setting both “WB” (white balance) and
“Tone” to “Auto”). Figure 5.9 shows the results. To quantify how successful
each enhancement is, we conducted a crowdsourced user study, where we asked
crowd workers to identify which image looks best among the three enhancement
results and the original one. For quality control, we duplicated each question-
naire and discarded answers from participants who provided inconsistent answers.
The numbers in Figure 5.9 show the results. The photos enhanced by our crowd-
powered optimization were preferred over the others in these cases.

Next, to see the robustness of our framework with respect to varying the ini-
tial randomized seeds, we repeated the same optimization procedure three times
(Trial A, B, and C). Figure 5.10 (Top) shows the sequences of enhanced pho-
tographs over the iterations. We measured the differences between the trials by
using two metrics: a parameter space metric and a perceptual color metric. The
former is based on the [?>-norm in the space X between the corresponding pa-
rameter sets. The latter is based on the perceptual color distance metric called
CIEDE2000 [129]; we measured the perceptual distance for each pixel in the en-
hanced photographs and calculated the mean over all the pixels. The reason why
we need the perceptual metric is that the parameter space is non-linear with re-
spect to visual perception; very distant parameter sets can produce very similar
visuals (e.g., setting equally higher color balance values for all the RGB channels
does not change the visual). Figure 5.10 (Bottom) shows the results. It shows
that the distances become small rapidly in the first 4 or 5 iterations, and they
converge to mostly the same enhancement even though the initial conditions are
quite different.

5.5.2 Material BRDF Editing

Material BRDF editing is a complex and unintuitive task even for experts in
film production, so that animation studios have developed parameter tweaking
systems specifically for this purpose [101]. Researchers have also presented sys-
tems for editing BRDF parameters [43, 105, 125], using many domain-specific
solutions.

By recent spread of game engines, opportunities for casual game developers
or designers to design a number of materials in game scenes have increased. To
support especially this scenario, we consider to tweak parameters in “Standard
Shader” provided in Unity 5 [150] as the target design space. This shader pro-
vides physically based shading and can be used to express various BRDFs such as
plastic, metal, and fabric. In this shader, BRDF is parametrized by albedo light-
ness, specular lightness, and smoothness. The number of free parameters is three
in monotone and seven in full color (we parametrize the color space using HSV).
Figure 5.11 shows randomly sampled BRDFs, illustrating the expressiveness of
this shader. When rendering images, we set an HDR skybox and reflective probes
to this scene so that the material appearance would be effectively expressed.

Novice users might have goal visions (7.e., make this teapot look shiny gray
metal), but might not know how each of parameters affects the material appear-
ance. Our framework enables automatic adjustment of BRDF parameters if a
user has a reference photograph; our crowd-powered optimizer can be used to
minimize the perceptual distance between the appearance in the photograph and
the produced appearance by the shader. In the microtasks, we showed both the
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Original Ours Photoshop Lightroom

Figure 5.9: Comparison of photo color enhancement between our crowd-
powered optimization and auto enhancement in commercial software pack-
ages, Adobe Photoshop CC [9] and Adobe Photoshop Lightroom CC [10]. The number
on each photograph indicates the number of participants who preferred the photograph
to the other three in the user study. The second and third photographs are provided by
Flickr users, Kathleen Conklin and houroumono, respectively.

7



Chapter 5. Crowd-Powered Parameter Preference Maximization

Trial B

Initial #1 #2 #3
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Figure 5.10: Transitions of three optimization trials over iterations in photo
color enhancement. (Top) Transitions of the enhanced images. (Bottom) Transitions
of the differences between each trial, measured by the parameter space metric and the
perceptual color metric.

Figure 5.11: Randomly generated BRDFs, showing the design space of the ma-
terial BRDF editing application with 3-dimensional (Top) and 7-dimensional (Bottom)
settings.
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3-dimensional space (monotone) 7-dimensional space (full color)

Figure 5.12: Results of the crowdsourced BRDF editing with reference pho-
tographs. In each pair, the top image corresponds to the reference photograph and
the bottom image corresponds to the computed BRDF after 15 iterations. The left four
and the right two examples are computed in the 3-dimensional parameter space and the
7-dimensional parameter space, respectively. Some of photographs are provided by Flickr
users, Russell Trow, Alexandr Solo, Angie Stalker, Gwen, and lastcun.

reference photograph and a rendered image with a slider side by side as shown in
Figure 5.6 and asked the crowd workers to adjust the slider until their appear-
ances were as similar as possible. Figure 5.12 shows the results for both monotone
and full color spaces.

In a sense, this can be considered to be BRDF acquisition from a casual pho-
tograph. This is analogous to the concept of crowdshaping [135], where a human
body shape is constructed from a casually taken photograph through crowd-
sourcing. Our framework does not rely on domain-specific knowledges and can
be used on demand, while crowdshaping is based on a specific model between
human shape and specific attributes, and requires comprehensive perceptual user
study in advance to build the model.

Another usage of our framework is that the user can specify textual instruc-
tions instead of reference photographs. Figure 5.13 illustrates the results of this
usage, where we instructed crowd workers to adjust the slider so that it looks like
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“Mirror-like reflective” “Dark blue plastic” “Gold”

Figure 5.13: Results of the crowdsourced BRDF editing with textual instruc-
tions. For the left two and the right two images, the 3-dimensional and the 7-dimensional
parameter spaces are used, respectively.

“brushed stainless”, “dark blue plastic”, etc. This is not easy when a human-in-
the-loop approach is not taken.

5.6 Evaluation

In Section 5.5, we showed that our method can produce practical-quality results
in two different design domains. The remaining questions to be answered here
are:

Q1: Does the use of single-slider manipulation (SSM) oracle improve optimiza-
tion performance?

Q2: How much does the task burden increase as a result of using SSM?

To answer them, we consider the following two baseline conditions. The first is
the 2-gallery comparison (2GC) oracle as used by Brochu et al. [33, 34], where a
human processor is asked to choose one option from two given options. The two
options are sampled at xt and x™. The second condition is called a 4-gallery
comparison (4GC) oracle, where four (instead of two) options are presented and
one option is selected from them. The four options are sampled using Schonlau
et al.’s method [123], following [31]. We modeled the data likelihood in 2GC and
4GC by using the BT and BTL models, respectively.

First, we compared our SSM approach with 2GC and 4GC using synthetic
settings (Expl), where we simulated responses from crowds by using a known
test function. Then we compared the three approaches in a crowdsourcing setting
(Exp2). In both Exp1l and Exp2, we evaluated the number of iterations required
to get good solutions, to answer Q1. In Exp2, we also evaluated the microtask
burden on the crowds, to answer Q2.

5.6.1 Experiment 1: Synthetic Setting

We optimized an n-dimensional test function:

g(x) = exp {—M} , (5.34)

202

where we set g = [0.5 --- 0.5]7 and ¢ = 0.5. This function has its maximum
at p. We synthesized oracles from this function and tested n € {2, 3,4, 6,12, 20}.
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For each iteration, we recorded the residuals:
r = x* - ul. (5.35)

Figure 5.14 shows the results. In general, the residuals drop faster at the begin-
ning and converge to smaller values at the end in SSM than in 2GC and 4GC.
The gallery comparison approaches often provide “flat” graphs where the resid-
ual does not decrease for several iterations. The reason for this may be that,
especially at the beginning of the iteration, the algorithm is likely to sample the
“boundary” of X because the uncertainty is very large around the boundary. On
the other hand, this “boundary-exploration” stage is not a critical problem in the
SSM approach, because the slider space lies across the design space even when
the one end is on the boundary.

5.6.2 Experiment 2: Crowdsourcing Setting

To quantify the optimization performance in crowdsourcing settings, we used
photo color enhancement with a reference image. We manually chose a reference
parameter set x"°f
a reference image) in advance. In the SSM setting, crowd workers were shown
a reference image and an editable image with a slider, and asked to adjust the
slider so that the edited image would be as similar to the reference image as pos-
sible (Figure 5.15 (Left)). In the 2GC and 4GC settings, the crowd workers were
shown a reference image and options and asked to find the most similar option
(Figure 5.15 (Middle) and (Right)). As the quality control in the 2GC and 4GC
settings, we duplicated each comparison task while showing the options in oppo-
site order and omitted workers whose responses were contradictory. Figure 5.16
shows the change in the error as measured by the perceptual color metric over
the iterations. We can see that the SSM approach performs better than the 2GC
and 4GC approaches do. The trends are mostly consistent with the results of the
synthetic settings (Figure 5.14). Figure 5.17 visualizes sequences of the images
enhanced by the predicted best parameter set x at each step.

and generated a corresponding image as the ground truth (i.e.,

Microtask burden. A possible drawback of the single-slider manipulation task
is that it can be more tedious than a comparison task. To respond to this concern,
we compared SSM, 2GC, and 4GC in terms of the task-completion time. For each
microtask executed by a crowd worker, we measured the elapsed time from the
moment that the HTML documents in the task page were loaded to the moment
that the submission button was pushed. The task-completion time included the
time for reading the task instructions and the time for conducting duplicate tasks
for quality control. Figure 5.18 shows the results using box plots (the maximum
values are not shown for space reasons). It indicates that the SSM microtask
requires more time than the other microtasks, but its time is still comparable
(less than twice). Considering that the convergence of the SSM approach is
much (at least more than two times) faster than those of the others, we argue
that our SSM approach is preferable even though the task burden is moderately
heavier. Note that this increase of task-completion time does not badly affect the
entire latency in practice because other overhead (e.g., between requests of task
deployment and findings of the tasks by crowds) is dominant.
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Figure 5.14: Results of the synthetic experiment. We compare the residuals (ver-
tical axis; lower is better) over iterations (horizontal axis) among the single-slider ma-
nipulation (SSM), the 2-gallery comparison (2GC), and the 4-gallery comparison (4GC)
settings. We repeated the same procedure 20 times for each condition. In each pair of
graphs, the top graph shows the raw data, and the bottom graph shows the means for
each condition.

5.7 Limitations and Future Work

As we described in Chapter 1, our framework is built upon many assumptions,
some of which are difficult to validate quantitatively. For example, we assumed
that there exists a common goodness function shared among crowd workers. In
Figure 5.10, we observed that even if the initial parameter sets were different,
they eventually converged to similar designs, indicating that this assumption
seems valid in this specific situation. However, it is difficult to determine whether
this assumption is valid in other situations. For example, there are various color
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No.1 No.1 No.1
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Reference image

Single-slider manipulation (SSM) 2-gallery comparison (2GC) 4-gallery comparison (4GC)

Figure 5.15: Screen captures of microtasks used for performance comparison
in the crowdsourcing setting. Single-slider manipulation (SSM), 2-gallery comparison
(2GC), and 4-gallery comparison (4GC) approaches are shown from left to right. The
application of photo color enhancement with reference images is used.
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Figure 5.16: Results of the crowdsourcing experiment. We compare the residu-
als (vertical axis; lower is better) over iterations (horizontal axis) among the single-slider
manipulation (SSM), 2-gallery comparison (2GC), and 4-gallery comparison (4GC) set-
tings. The application of photo color enhancement with reference images is used. We
repeated the same procedure 3 times for each condition.

palette styles; some people might prefer a certain style while others might prefer
another style. In this case, the assumption of a common goodness function may
be invalid.

For better understanding of the behavior of our framework, it may be interest-
ing to evaluate the consistency between the goodness function g(-) constructed
by regression methods (e.g., the crowd-powered estimation method described in
Chapter 3) and the optimal parameter set x* obtained by our framework. It is
expected that, for the same design space, they eventually provide peaks at the
same location. However, especially when the design space is high-dimensional,
our framework is expected to find the maximum more rapidly thanks to both
the single-slider manipulation microtask design and the Bayesian optimization-
based sampling strategy, while the crowd-powered estimation method described
in Chapter 3 tries to sample points randomly to cover the entire design space.
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Figure 5.17: Sequences of the current-best images over iterations in the per-
formance comparison in the crowdsourcing setting.
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Figure 5.18: Comparison of task-completion times among single-slider manipu-
lation (SSM), 2-gallery comparison (2GC), and 4-gallery comparison (4GC) microtasks.
The times are measured using the photo color enhancement application.

We have discussed how to reduce the number of queries, but we have not
touched on how the time and monetary costs of crowdsourcing can be minimized.
To reduce the time cost (i.e., the latency to obtain the optimization results),
our framework could incorporate real-time crowdsourcing techniques [27, 24].
Also, parallelizing (or batching) Bayesian optimization [17, 44] may be useful for
reducing the entire latency. Reducing the monetary cost may be more challenging.
Currently, we always employ a fixed number of crowd workers in each iteration;
this number could be adaptively adjusted to each application and each step, but
we have not investigated strategies for this. Also, we need to develop a criterion
for detecting convergence and thereby stopping the iteration automatically; this
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will prevent unnecessary tasks from being deployed.

We assumed that design spaces are adequately parametrized in advance. We do
not intend to handle very high-dimensional spaces (e.g., over 100 parameters),
which need to be reduced beforehand by other methods. Also, design spaces
need to be visually smooth, because our formulation assumes that the goodness
function is smooth.

Our framework does not rely on domain-specific knowledges; this enables it
to be used in various design domains. However, to build optimizers for specific
design scenarios, it would be more effective to use domain-specific rules or data.
One possibility for this direction is to incorporate such prior knowledges as the
mean function m(-) in Gaussian process (Equation 5.6). For example, Brochu
et al. [31] took this approach to incorporate other animators’ editing results as
prior knowledges to support an animator to design fluid animations.

Investigating the use of the slider-based optimization in a single-user setting
is also an interesting idea. In this case, it is advantageous that the parameters
can be optimized based on the user’s personal preference. Unlike tweaking raw
sliders simultaneously, users do not have to learn and remember the effects of raw
parameters; what users have to care about is the maximum of the slider in each
step.

We believe that the single-slider manipulation microtask design could be ef-
fective for regression purpose (e.g., the method described in Chapter 3) as well,
while in this work we focused on its use for optimization. We also expect that
our microtask design can be useful for generating a new type of data annotation
for machine learning (e.g., [124, 39, 111, 54, 135, 125]), where comparison-based
or Likert-scale-based methods are currently used.
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Chapter 6

Conclusion

6.1 Summary

Our goal was to explore the potential of computational methods for facilitating
parameter adjustment in design activities in which aesthetic preference is used for
assessing the quality of design and is to be maximized. One of the challenges to
achieve this facilitation is that, as the objective of parameter adjustment is based
on human perception, it is non-trivial how we can handle it in computational
ways. Our key idea is that a parameter adjustment task can be supposed as a
mathematical optimization problem, and from this viewpoint, we can think of
usages of computational techniques in a structured manner.

In this thesis, we specifically explored three computational design methods:
the crowd-powered estimation method (Chapter 3), the history-based estimation
method (Chapter 4), and the crowd-powered maximization (Chapter 5) method.
Two of the three methods are designed to estimate preference by computational
techniques and then facilitate users’ manual design exploration using the esti-
mated preference. The other one is designed to automatically search the design
space for the optimal solution by computational decision making. Investigation of
these two usages of computational techniques is one of our primary contributions.
For computationally handling aesthetic preference, we sought to gather necessary
preference data from crowdsourced human computation and from users’ editing
history. We showed both of the two data gathering approaches were able to be
effective, which is another primary contribution in this thesis.

Figure 6.1 summarizes the relationship among these three methods from the
users’ viewpoint. We illustrate their characteristics from two aspects: whose pref-
erence is involved, and how the user interacts. In the aspect of the preference
owner, the history-based estimation method is the most personal; both the esti-
mation computation and the determination of the final design are based on the
user’s personal preference. On the other hand, the crowd-powered maximization
method is the most general; the design process is completed using only crowds’
general preference. The crowd-powered estimation method is in-between; it relies
on crowds’ general preference in its computation but the final design is determined
based on the user’s personal preference. These three methods also has different
characteristics in the aspect of the user interaction; the history-based estima-
tion method is the most manual, the crowd-powered maximization method is the
most automatic, and the crowd-powered estimation method is in-between. We
consider that these three methods provide solutions for the same problem from
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History-Based Estimation

This method supports the user using semi-
automatically estimated personal preference.

The user has the freedom of manually
determining the final design using his or her
personal preference.

Crowd-Powered Estimation

This method supports the user using
automatically estimated general preference.

Personal A
preference The user still has the freedom of manually
(@i 4 determining the final design using his or her
personal preference.
Crowd-Powered Maximization
Chapter 3 '/ This method determines the design by
General Chapter 5 automatically maximizing general preference.
preference V{ > The user experience can be fully automatic,
Manual Automatic while the user has no chance to intervening
workflow workflow in general preference.

Figure 6.1: Summary of the three methods from the users’ viewpoint. We illus-
trate their relationship using two dimensions: their preference (personal vs. general) and
workflow (manual vs. automatic) properties.

qualitatively different approaches, and thus we do not intend to argue that, for
example, some method is simply superior (or inferior) to the others.

6.2 Discussions

6.2.1 Estimation of g(-) vs. Maximization of g(-)

We have considered two usages about computational techniques. The first ap-
proach, i.e., the estimation of the goodness function g(-), which we investigated
in Chapter 3 and Chapter 4, has several advantages compared to the other ap-
proach:

e The user can maintain the control about how he or she explores the design
space X. He or she is not forced to follow the computational guidance by
the system. This was appreciated by experts in the user study in Chapter 4.

e The chosen solution x* is always ensured to be optimal for the target user,
as the “true” goodness function used for deciding the final solution is owned
by the user, which can be different from the “estimated” goodness function
used for guidance.

e Even if the estimation is not very accurate, it can still guide the user to
explore the design space X effectively. We observed that, in most cases, the
estimated goodness function is useful for providing a good starting point
for exploration and for eliminating meaningless visits of bad designs.
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e When the algorithm is less confident about the estimation, the system can
behave still effective by making the computational guidance less influential,
rather than guiding the user in an inaccurate way. This was evidenced to
be effective and preferable in Chapter 4.

e This approach can be seamlessly integrated in existing practical scenarios
as evidenced in Chapter 4, because it does not intend to replace existing
workflows but does augment (or enhance) existing worklows.

On the other hand, the second approach, i.e., the maximization of the goodness
function g(-) by computational techniques, investigated in Chapter 5, has different
advantages:

e The user does not need to care about the strategy of how design exploration
should proceed. This enables a new paradigm for designs driven by aesthetic
preference, and it solves many constraints with respect to user experience.
For example, users are released from the need to understand and learn the
effects of each design parameter in this approach.

e By implementing this approach using crowdsourced human computation,
the user no longer needs to interact with the system, enabling fully auto-
matic workflows. This further broadens possible usage scenarios.

e The found solutions by this approach can be used as either final products
or good starting points for further manual refinement. In Chapter 5, we
observed that most results were not necessarily perfect but quite acceptable
as final products. Note that future investigation may further improve the
quality.

e This approach aims to find the optimal solution as efficiently as possible,
based on computational optimization techniques. In Chapter 5, we sought
to use Bayesian optimization techniques so as to reduce the number of
iterations. Compared to the other approach of estimating the goodness
function g(-) everywhere in the design space X', whose computational cost
is essentially exponential with respect to the dimensionality, this approach
may ease this problem in high-dimensional design spaces.

A hybrid approach between these two approaches is also possible. For ex-
ample, partially constructing the goodness function g(-) around the expected
optimal solution may be useful for supporting users to explore the design space.
Investigating this possibility is an important future work.

6.2.2 Crowdsourced Human Computation vs. Editing History

We have investigated two data sources: crowdsourced human computation in
Chapter 3 and Chapter 5, and editing history in Chapter 4. Here we summarize
the advantages and the disadvantages of these two data sources learned through
our investigation:

Application domain. In the human computation approach, the use of micro-
task-based crowdsourcing is inevitable, and it limits its application to the
domains where even unskilled, non-expert crowd workers can adequately
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assess the quality of designs. An example of such domains is photo color
enhancement; it may be a valid assumption that most crowd workers have
their preference on photo color enhancement, since enhanced photographs
are ubiquitously seen in daily lives (e.g., in product advertisements). On
the other hand, by using editing history of expert users, we can possibly
apply computational techniques to the domains where only experts can
adequately assess the quality of designs.

Whose preference? When using crowdsourcing, we assume the existence of
“general” preference shared among crowd workers, and query microtasks to
observe the general preference. On the other hand, an advantage of using
editing history as the data source is that we can learn “personal” preference
of the user. In the user study with eight expert users in Chapter 4, although
we have not quantitatively measured, we observed clear differences in pref-
erence between each participant. Some participants appreciated that the
system is useful and trustful because it learns personal preference from per-
sonal data. This suggests the importance of learning personal preference.

Difficulty in data gathering. Microtask-based crowdsourcing enables on-de-
mand generation of new data as we demonstrated in Chapter 3 and Chap-
ter 5, which is a large advantage of the human computation approach. On
the other hand, editing history cannot be generated on demand, and has
to be gathered implicitly. To overcome this difficulty of data gathering, in
Chapter 4, we focused on a very specific scenario where a user has many
photographs that are going to be enhanced manually. While this is a re-
alistic scenario in photo color enhancement, it may not always be easy to
find similar situations in other design domains.

6.3 Remaining Challenges

We have investigated computational design methods under many assumptions.
To ease assumptions and make our methods more practical, there are a number
of possible remaining challenges as next steps.

6.3.1 Design Space Parametrization

We have assumed that the target design space is appropriately parametrized in
advance. It is an important future work to seek appropriate parametrization
techniques, to broaden (currently limited) applications of computational design
methods driven by aesthetic preference.

Currently, we do not try to directly handle very high-dimensional design spaces,
e.g., with thousands of degrees of freedom. For example, “naive” 3D shape de-
formation is out of our scope; when a designer tweaks a 3D shape represented
by a triangular mesh by deforming it, the degrees of freedom of this deformation
are considered 3 x |V|, where V is a set of all vertices. Directly manipulating
each vertex position is the most naive approach, but unsurprisingly, this easily
breaks the aesthetic quality of the shape and results in unacceptable designs,
as shown in Figure 6.2 (Left). This means that, although the design space is
wide, acceptable designs are lying on only quite limited subspaces, or a lower-
dimensional manifold. This fact makes it challenging to directly solve this design
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Figure 6.2: Tweaking for shape deformation. (Left) To deform a 3D model, naively
tweaking each vertex position easily breaks the aesthetic quality of a shape. (Right) To
prevent this, designers manually define deformation bases (rigs) that can be tweaked by
sliders to reduce the design space. The images are taken from [84].

task as an optimization problem, and similar situations are likely to happen in
many high-dimensional design spaces.

Note that, in practical scenarios on shape deformation, designers often man-
ually define rigs—a set of bases of mesh deformation that are often tweak-able
via sliders (see Figure 6.2 (Right))—in advance, to reduce the design space ap-
propriately. In Chapter 3, we applied our crowd-powered estimation method to a
shape deformation application (i.e., facial expression modeling) where the design
space is parametrized using a reasonable number of rig parameters in advance,
rather than directly manipulating vertex positions.

The rigging process in shape deformation is considered as dimensionality re-
duction that is manually processed by designers. We consider that dimensional-
ity reduction techniques [151] could be helpful for many problems with high-
dimensional design spaces. However, this is still challenging because, unlike
typical problems in data science, the resulting space in our case has to be ei-
ther designer-friendly or optimization-friendly (or, both) for maximizing aesthetic
preference. Recently, Yumer et al. [166] presented that autoencoder networks can
be used for converting a high-dimensional, visually discontinuous design space to
a lower-dimensional, visually continuous design space that is more desirable for
design exploration. Incorporating human preference in dimensionality reduction
of design spaces is an interesting future work.

6.3.2 Discrete Parameters

As we focused on only continuous parameters, our methods cannot handle discrete
design parameters, such as fonts [111] and web design templates [39]. Remaining
challenges to handle such discrete parameters include how to represent goodness
functions for design spaces including discrete parameters, and how to facilitate
users’ interactive exploration. It is also a future work to extend our methods so
that they can jointly handle discrete and continuous parameters.

6.3.3 Locally Optimal Design Alternatives

In some scenarios, totally different design alternatives can be equally “best” and
it can be hard to determine which is better. For example, in Adobe Color CC [8],
which is a user community platform to make, explore, and share color palettes
(a set of colors usually consisting of five colors), there are a number of (almost)
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Figure 6.3: “Most Popular” color palettes in the user community of Adobe
Color CC [8]. Though visually different from each other, they are (mostly) equally
popular and preferred by many users.

equally popular color palettes that have been preferred by many users, as shown
in Figure 6.3. In this case, if we assume the existence of a goodness function for
color palettes, the popular palettes can be considered as local maximums of the
goodness function. Considering that the goal is to support design activities, it
may not be effective to assume that there is a sole global maximum in this design
space and guide the user towards the global maximum; rather, it may be more
desirable to provide a variety of good design alternatives so that the user can
efficiently learn and choose from them. There is a room for investigation about
how computation can support such design scenarios.

6.3.4 Evaluation Methodology

One of the issues in computational design driven by aesthetic preference is the
lack of established, general methodology of evaluating each new method. Unlike
other long-standing domains such as object recognition in images, where the va-
lidity of a method could be quantitatively measured via error rates, validation
in our target domain is highly challenging by several reasons. The first reason
is the difficulty of defining “correct” aesthetic preference, which can be highly
dependent on scenarios. Also, as the ultimate goal is the support of design activ-
ities, the effectiveness needs to be assessed by human designers. In this thesis, we
evaluated each method heuristically; for example, the effectiveness of the history-
based estimation method is qualitatively evidenced through a user study from the
viewpoint of human-computer interaction, and that of the crowd-powered maxi-
mization method is evaluated by comparing previous methods. Methods in this
domain including ours are built on many assumptions, each of which is difficult
to validate and in itself could be independent research topics. We consider that
it is an important future work to establish general evaluation schemes.

6.3.5 More Complex Models of Crowd Behaviors

We built our crowd-powered methods on an assumption on crowd workers: crowd
workers share a common goodness function, and each crowd worker responses
based on the common goodness function with some noises. Thus, we assumed that
we can observe the common goodness function by asking many crowd workers and
then averaging their responses. This assumption may be valid in some scenarios
but may not in many other scenarios; for example, aesthetic preference may differ
between each individual, or crowds may form several clusters with respect to their
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aesthetic preference. Modeling such more complex properties of crowds is an
important future challenge for enabling more broadly applicable crowd-powered
computational design.

6.3.6 Incorporating Domain-Specific Heuristics

We have tried to use minimal domain-specific knowledges so that our methods
are as general as possible. This allows our methods to be applied in various
design domains, including photo color enhancement, light and camera setting,
facial expression modeling, and material BRDF as demonstrated in this thesis.
However, we suggest that our methods should be combined with domain-specific
heuristics when deployed in practical specific scenarios. For example, if one builds
a software to tweak viewpoints of 3D objects, the heuristic features and the pre-
trained model in [124] could be jointly used with our methods. Seeking effective
ways of such combinations is one of our future work.

6.3.7 Combining Crowd and Personal Preference

As we discussed, both the approach of learning crowds’ general preference and
that of learning users’ personal preference have its advantages and disadvantages.
To complement disadvantages of each approach, we envision that the combina-
tion of these two approaches is useful and worth investigating. For example, to
support users’ interactive design exploration, it could be effective to learn crowds’
preference as pre-processing (e.g., Chapter 3) and then learn personal preference
in on-line session (e.g., Chapter 4) but as the difference from crowds preference.
This combinational approach has been partially investigated so far in specific do-
mains [31, 71], but further investigation is desired to support more various design
scenarios.

6.4 Future Directions

Finally, we conclude this thesis with discussions of several future research direc-
tions on computational design methods beyond parameter tweaking driven by
aesthetic preference.

6.4.1 Free-Form Design from Scratch

Our target problem is parameter tweaking, which means that, in most cases, there
exists a certain content before editing and it will be modified somehow (e.g., an
existing photograph will be modified by applying tonal curves). Thus, more free-
form design activities, e.g., drawing a picture on a canvas from scratch, are not
considered. Yet, existence of goodness functions even for such design activities
can be supposed. It is an open question whether we can handle such free-form
designs as an extension of parameter tweaking, or we need to consider completely
different approaches.

Some of from-scratch design activities can be interpreted as procedures (or se-
quences of commands) that can be simulated by machine processors. For exam-
ple, even drawing acrylic paintings can be described as a sequence of executable
painting commands [86]. In this case, the design space can be formulated as a
tree structure whose leaves and edges represent visual designs and executable
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commands, respectively, and the design goal can be considered to find the best
leaf node from this true. For this, tree search optimization techniques (e.g.,
the branch and bound method) might be useful. Actually, this idea has been
partially investigated in the research domain of computational design of graph-
ical user interface [52]. While we focused on continuous optimization problems,
various optimization formulations including tree search optimization are worth
investigating as the next step.

6.4.2 More Complex Design Criteria

In practical design scenarios, designers may have to solve complex problems with
more than one design criteria. For example, when a graphic designer designs
an advertisement targeted at mainly women, he or she has to bias the goodness
function towards women’s aesthetic preference. In this case, it is possible to
formulate the design problem as

x" = argg(ax {wmalegmale(x) + wfemalegfemale(x)}a (6.1)
X
where gmale () and gremale () are the goodness functions owned by men and women,
respectively, and wpale and wWeemale are the weights for adjusting the bias which
can be Wmale < Wiemale in this case. Using crowdsourced human computation,
this could be solved by utilizing demographic information of crowd workers, in
the similar way by Reinecke and Gajos [118].

Another scenario is the case where functional criteria as well as aesthetic pref-
erence criteria are involved. For example, a designer may design a chair that has
at least a certain durability and at the same time he or she may try to maximize
its aesthetic quality. In this case, the problem can be formulated as a constrained
optimization:

x* = argmax ¢(x) subject to C(x) >0, (6.2)
xeX

where C(+) is a function for measuring the functional criterion, i.e., durability
in this case, which returns positive values if the criterion is satisfied, i.e., the
chair has at least required durability. Note that, while several previous works
on interactive design of functional objects (e.g., [147, 130]) have tackled similar
scenarios, their computational supports are typically only for ensuring the func-
tional constraint C'(x) > 0, and the maximization of aesthetic preference totally
relies on users’ trials and errors. Investigating methods for such design scenarios
with complex design criteria is an important extension of our research.

6.4.3 Computational Creative Design

In this thesis, we have considered aesthetic preference as the target criterion in
design activities. Another important aspect of design activities may be creativity.
While we did not included creativity in our scope, we believe that our computa-
tional design formulations are extensible for incorporating creativity along with
aesthetic preference as the criteria. For this purpose, discussions and techniques
in the emerging research field called computational creativity [158] may be use-
ful. For example, Cohen-Or and Zhang [42] described about creativity in the
geometric modeling context that
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Figure 6.4: An example of design optimization frameworks that explicitly
consider creativity. Xu et al. [163] proposed an evolutionary computation method
that takes diversity into account for enabling creative 3D shape modeling.

. creative inspirations to modelers are often in the form of new
models that were not envisioned and contain certain elements of sur-
prise or unexpectedness.”

According to them, the key to provide creative inspirations to designers is con-
sidered to be unexpectedness. Some researchers have interpreted such unexpect-
edness as diversity in design alternatives and explicitly formulated optimization
problems for finding the most diverse (and plausible) set of design alternatives
[163, 13, 161]. For example, Xu et al. [163] proposed an evolutionary computation
method for enabling creative 3D shape modeling, in which a set of designs evolves
so that each of them is preferable and, at the same time, they are diverse (see
Figure 6.4). We believe that investigating new ways for incorporating creativity
into our design formulations (e.g., adding a new term for enhancing creativity
to the objective function) or our entire frameworks (e.g., providing additional
creative cues in the user interfaces) is a very interesting future direction from the
viewpoints of both developing new computational technology and designing new
user experience.

94



References

1]

[12]

[13]

[14]

Amazon Mechanical Turk. https://www.mturk.com/. Last checked: Oc-
tober 24, 2016.

CrowdFlower. https://www.crowdflower.com/. Last checked: October
31, 2016.

Hard Surface Shaders Free. https://www.assetstore.unity3d.com/#/
content/729. Last checked: November 12, 2016.

Morguefile. https://morguefile.com/. Last checked: November 12, 2016.

Thingiverse. http://www.thingiverse.com/. Last checked: December 8§,
2016.

Upwork. https://www.upwork.com/. Last checked: October 24, 2016.

Adobe Systems Inc. Adobe After Effects CC. http://www.adobe.com/
products/aftereffects.html.

Adobe Systems Inc. Adobe Color CC. https://color.adobe.com/.

Adobe Systems Inc. Adobe Photoshop CC. http://www.adobe.com/
products/photoshop.html.

Adobe Systems Inc. Adobe Photoshop Lightroom CC. http://www.adobe.
com/products/photoshop-lightroom.html.

Adobe Systems Inc. Photoshop elements help | auto smart tone. https://
helpx.adobe.com/photoshop-elements/using/auto-smart-tone.html.
Last checked: September 23, 2015.

Adobe Systems Inc. Photoshop help | creating actions. https://helpx.
adobe.com/photoshop/using/creating-actions.html. Last checked:
September 23, 2015.

Shailen Agrawal, Shuo Shen, and Michiel van de Panne. Diverse motion
variations for physics-based character animation. In Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA
13, pages 3744, 2013.

Brett Allen, Brian Curless, and Zoran Popovié. The space of human body
shapes: Reconstruction and parameterization from range scans. ACM
Trans. Graph., 22(3):587-594, July 2003.

95


https://www.mturk.com/
https://www.crowdflower.com/
https://www.assetstore.unity3d.com/#/content/729
https://www.assetstore.unity3d.com/#/content/729
https://morguefile.com/
http://www.thingiverse.com/
https://www.upwork.com/
http://www.adobe.com/products/aftereffects.html
http://www.adobe.com/products/aftereffects.html
https://color.adobe.com/
http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop-lightroom.html
http://www.adobe.com/products/photoshop-lightroom.html
https://helpx.adobe.com/photoshop-elements/using/auto-smart-tone.html
https://helpx.adobe.com/photoshop-elements/using/auto-smart-tone.html
https://helpx.adobe.com/photoshop/using/creating-actions.html
https://helpx.adobe.com/photoshop/using/creating-actions.html

REFERENCES

[15]

[16]

[17]

[25]

Ken Anjyo, J. P. Lewis, and Frédéric Pighin. Scattered data interpolation
for computer graphics. In ACM SIGGRAPH 2014 Courses, SIGGRAPH
14, pages 27:1-27:69, 2014.

Autodesk Inc. Maya.  http://www.autodesk.com/products/maya/
overview.

Javad Azimi, Alan Fern, and Xiaoli Z. Fern. Batch bayesian optimization
via simulation matching. In Advances in Neural Information Processing
Systems 23, NIPS ’10, pages 109-117, 2010.

Moritz Béicher, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung.
Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans.
Graph., 33(4):96:1-96:10, July 2014.

Aaron Bangor, Philip T. Kortum, and James T. Miller. An empirical eval-
uation of the system usability scale. International Journal of Human—
Computer Interaction, 24(6):574-594, 2008.

Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images in the wild.
ACM Trans. Graph., 33(4):159:1-159:12, July 2014.

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Opensurfaces:
A richly annotated catalog of surface appearance. ACM Trans. Graph.,
32(4):111:1-111:17, July 2013.

Luca Benedetti, Holger Winnemoller, Massimiliano Corsini, and Roberto
Scopigno. Painting with bob: Assisted creativity for novices. In Proceed-
ings of the 27th Annual ACM Symposium on User Interface Software and
Technology, UIST 14, pages 419-428, 2014.

Yoshua Bengio and Pascal Vincent. Locally weighted full covariance gaus-
sian density estimation. Cirano working papers, CIRANO, 2004.

Michael S. Bernstein, Joel Brandt, Robert C. Miller, and David R. Karger.
Crowds in two seconds: Enabling realtime crowd-powered interfaces. In
Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology, UIST ’11, pages 33-42, 2011.

Michael S. Bernstein, Greg Little, Robert C. Miller, Bjéorn Hartmann,
Mark S. Ackerman, David R. Karger, David Crowell, and Katrina Panovich.
Soylent: A word processor with a crowd inside. In Proceedings of the 23rd
Annual ACM Symposium on User Interface Software and Technology, UIST
10, pages 313-322, 2010.

Floraine Berthouzoz, Wilmot Li, Mira Dontcheva, and Maneesh Agrawala.
A framework for content-adaptive photo manipulation macros: Applica-
tion to face, landscape, and global manipulations. ACM Trans. Graph.,
30(5):120:1-120:14, October 2011.

Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew
Miller, Robert C. Miller, Robin Miller, Aubrey Tatarowicz, Brandyn White,
Samual White, and Tom Yeh. Vizwiz: Nearly real-time answers to visual

96


http://www.autodesk.com/products/maya/overview
http://www.autodesk.com/products/maya/overview

REFERENCES

[30]

[31]

[35]

[36]

questions. In Proceedings of the 23rd Annual ACM Symposium on User
Interface Software and Technology, UIST 10, pages 333342, 2010.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., 1995.

Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d
faces. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 99, pages 187-194, 1999.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incom-
plete block designs: 1. the method of paired comparisons. Biometrika,
39(3/4):324-345, 1952.

Eric Brochu, Tyson Brochu, and Nando de Freitas. A bayesian interactive
optimization approach to procedural animation design. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, SCA ’10, pages 103-112, 2010.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning, 2010. arXiv:1012.2599.

Eric Brochu, Nando de Freitas, and Abhijeet Ghosh. Active preference
learning with discrete choice data. In Advances in Neural Information
Processing Systems 20, NIPS *07, pages 409-416, 2007.

Eric Brochu, Abhijeet Ghosh, and Nando de Freitas. Preference galleries
for material design. In ACM SIGGRAPH 2007 Posters, SIGGRAPH 07,
2007.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learn-
ing photographic global tonal adjustment with a database of input/output
image pairs. In Proceedings of the 24th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 11, pages 97-104, 2011.

Juan C. Caicedo, Ashish Kapoor, and Sing Bing Kang. Collaborative per-
sonalization of image enhancement. In Proceedings of the 24th IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR ’11, pages
249-256, June 2011.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation of
3d objects with radial basis functions. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
01, pages 67-76, 2001.

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam
Finkelstein.  Palette-based photo recoloring. ACM Trans. Graph.,
34(4):139:1-139:11, July 2015.

Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and
Thomas Funkhouser. Attribit: Content creation with semantic attributes.

97



REFERENCES

[45]

[50]

[51]

In Proceedings of the 26th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST 13, pages 193-202, 2013.

Fanny Chevalier, Pierre Dragicevic, and Christophe Hurter. Histomages:
Fully synchronized views for image editing. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology, UIST
12, pages 281-286, 2012.

Wei Chu and Zoubin Ghahramani. Preference learning with gaussian pro-
cesses. In Proceedings of the 22nd International Conference on Machine
Learning, ICML ’05, pages 137144, 2005.

Daniel Cohen-Or and Hao Zhang. From inspired modeling to creative mod-
eling. The Visual Computer, 32(1):7-14, 2016.

Mark Colbert, Sumanta Pattanaik, and Jaroslav Krivanek. Brdf-shop:
Creating physically correct bidirectional reflectance distribution functions.
IEEE Comput. Graph. Appl., 26(1):30-36, January 2006.

Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis.
Parallel gaussian process optimization with upper confidence bound and
pure exploration. In Proceedings of Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, ECML-PKDD ’13, pages
225-240, 2013.

Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee,
Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popovic, and
Foldit players. Predicting protein structures with a multiplayer online game.
Nature, 466(7307):756-760, 08 2010.

Michael A. A. Cox and Trevor F. Cox. Multidimensional scaling. In Hand-
book of Data Visualization, Springer Handbooks Comp.Statistics, pages
315-347. Springer Berlin Heidelberg, 2008.

Allen Cypher. Eager: Programming repetitive tasks by example. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI '91, pages 33-39, 1991.

Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Studying aes-
thetics in photographic images using a computational approach. In Pro-
ceedings of the 9th European Conference on Computer Vision, ECCV’06,
pages 288-301, 2006.

Dynamo. WeAreDynamo Wiki. http://wiki.wearedynamo.org/. Last
checked: October 24, 2016.

Mark Ebden. Gaussian processes: A quick introduction, 2015.
arXiv:1505.02965.

Leah Findlater and Jacob Wobbrock. Personalized input: Improving ten-
finger touchscreen typing through automatic adaptation. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
12, pages 815-824, 2012.

98


http://wiki.wearedynamo.org/

REFERENCES

[52]

[53]

[56]

[57]

[58]

[59]

[61]

[62]

[63]

Krzysztof Gajos and Daniel S. Weld. Supple: Automatically generating user
interfaces. In Proceedings of the 9th International Conference on Intelligent
User Interfaces, IUI ’04, pages 93—-100, 2004.

Krzysztof Z. Gajos, Mary Czerwinski, Desney S. Tan, and Daniel S. Weld.
Exploring the design space for adaptive graphical user interfaces. In Pro-
ceedings of the Working Conference on Advanced Visual Interfaces, AVI 06,
pages 201-208, 2006.

Elena Garces, Aseem Agarwala, Diego Gutierrez, and Aaron Hertzmann.
A similarity measure for illustration style. ACM Trans. Graph., 33(4):93:1—
93:9, July 2014.

Yotam Gingold, Ariel Shamir, and Daniel Cohen-Or. Micro perceptual
human computation for visual tasks. ACM Trans. Graph., 31(5):119:1-
119:12, September 2012.

Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and
Takeo Igarashi. Generating photo manipulation tutorials by demonstration.
ACM Trans. Graph., 28(3):66:1-66:9, July 2009.

Anhong Guo, Xiang ’Anthony’ Chen, Haoran Qi, Samuel White, Suman
Ghosh, Chieko Asakawa, and Jeffrey P. Bigham. Vizlens: A robust and
interactive screen reader for interfaces in the real world. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology,
UIST ’16, pages 651-664, 2016.

Yoav HaCohen, Eli Shechtman, Dan B. Goldman, and Dani Lischinski.
Non-rigid dense correspondence with applications for image enhancement.
ACM Trans. Graph., 30(4):70:1-70:10, July 2011.

Yoav HaCohen, Eli Shechtman, Dan B. Goldman, and Dani Lischinski.
Optimizing color consistency in photo collections. ACM Trans. Graph.,
32(4):38:1-38:10, July 2013.

Bjorn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R.
Klemmer. Design as exploration: Creating interface alternatives through
parallel authoring and runtime tuning. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology, UIST ’08,
pages 91-100, 2008.

Jeff Howe. Crowdsourcing: A definition. http://crowdsourcing.
typepad.com/cs/2006/06/crowdsourcing_a.html, 2006. Last checked:
October 23, 2016.

Jeff Howe. The rise of crowdsourcing. https://www.wired.com/2006/06/
crowds/, 2006. Last checked: October 23, 2016.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketch-
ing interface for 3d freeform design. In Proceedings of the 26th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH 99,
pages 409-416, 1999.

99


http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
https://www.wired.com/2006/06/crowds/
https://www.wired.com/2006/06/crowds/

REFERENCES

[64]

[65]

[73]

[74]

[76]

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality manage-
ment on amazon mechanical turk. In Proceedings of the ACM SIGKDD
Workshop on Human Computation, HCOMP ’10, pages 64-67, 2010.

Ronnachai Jaroensri, Sylvain Paris, Aaron Hertzmann, Vladimir By-
chkovsky, and Frédo Durand. Predicting range of acceptable photographic
tonal adjustments. In Proceedings of the 2015 IEEE International Confer-
ence on Computational Photography, ICCP 15, pages 1-9, April 2015.

Steven G. Johnson. The nlopt nonlinear-optimization package, 2015.

Donald R. Jones, Cary Drake Perttunen, and Bruce E. Stuckman. Lip-
schitzian optimization without the lipschitz constant. J. Optim. Theory
Appl., 79(1):157-181, October 1993.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. J. of Global Optimization,
13(4):455-492, December 1998.

Hiroshi Kajino, Yuta Tsuboi, and Hisashi Kashima. Clustering crowds. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, AAAT ’13, pages 1120-1127, 2013.

Sing Bing Kang, Ashish Kapoor, and Dani Lischinski. Personalization of
image enhancement. In Proceedings of the 23rd IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR ’10, pages 1799-1806, June
2010.

Ashish Kapoor, Juan C. Caicedo, Dani Lischinski, and Sing Bing Kang.
Collaborative personalization of image enhancement. International Journal
of Computer Vision, 108(1):148-164, 2014.

Yan Ke, Xiaoou Tang, and Feng Jing. The design of high-level features
for photo quality assessment. In Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR
'06, pages 419-426, 2006.

Naoki Kita and Kazunori Miyata. Aesthetic rating and color suggestion for
color palettes. Computer Graphics Forum, 35(7):127-136, 2016.

Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies
with mechanical turk. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI "08, pages 453-456, 2008.

Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. Crowd-powered
parameter analysis for visual design exploration. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Technology, UIST
14, pages 65—74, 2014.

Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. Selph: Progressive
learning and support of manual photo color enhancement. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, CHI
’16, pages 2520-2532, 2016.

100



REFERENCES

[77]

78]

[83]

[84]

[38]

Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. Sequen-
tial line search for visual design optimization by crowds. Under review.

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel
Shamir, and Wojciech Matusik. Autoconnect: Computational design of
3d-printable connectors. ACM Trans. Graph., 34(6):231:1-231:11, October
2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25, NIPS ’12, pages 10971105, 2012.

Brian Kulis. Metric learning: A survey. Foundations and Trends® in
Machine Learning, 5(4):287-364, 2013.

Tessa Lau, Lawrence Bergman, Vittorio Castelli, and Daniel Oblinger.
Sheepdog: Learning procedures for technical support. In Proceedings of
the 9th International Conference on Intelligent User Interfaces, TUI ’04,
pages 109-116, 2004.

Lasse Farnung Laursen, Yuki Koyama, Hsiang-Ting Chen, Elena Garces,
Richard Harper Diego Gutierrez, and Takeo Igarashi. Icon set selection via
human computation. In Proc. Pacific Graphics 2016 — Short Papers, pages
1-6, 2016.

Matthew Lease. On quality control and machine learning in crowdsourcing.
In Proceedings of AAAI Workshops, pages 97-102, 2011.

J. P. Lewis, Ken Anjyo, Tachyun Rhee, Mengjie Zhang, Fred Pighin, and
Zhigang Deng. Practice and theory of blendshape facial models. In Furo-
graphics 2014 - State of the Art Reports, Eurographics 14, pages 199-218,
2014.

Congcong Li, Alexander C. Loui, and Tsuhan Chen. Towards aesthetics: A
photo quality assessment and photo selection system. In Proceedings of the
International Conference on Multimedia, MM ’10, pages 827-830, 2010.

Thomas Lindemeier, Jens Metzner, Lena Pollak, and Oliver Deussen.
Hardware-based non-photorealistic rendering using a painting robot. Com-
puter Graphics Forum, 34(2):311-323, 2015.

Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. Turkit:
Human computation algorithms on mechanical turk. In Proceedings of the
23rd Annual ACM Symposium on User Interface Software and Technology,
UIST 10, pages 57-66, 2010.

Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and
Eser Kandogan. Koala: Capture, share, automate, personalize business
processes on the web. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07, pages 943-946, 2007.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for
large scale optimization. Math. Program., 45(3):503-528, December 1989.

101



REFERENCES

[90]

[91]

[92]

[93]

[97]

[98]

[99]

[100]

[101]

Ligang Liu, Renjie Chen, Lior Wolf, and Daniel Cohen-Or. Optimizing
photo composition. Computer Graphics Forum, 29(2):469-478, 2010.

Tiangiang Liu, Aaron Hertzmann, Wilmot Li, and Thomas Funkhouser.
Style compatibility for 3d furniture models. ACM Trans. Graph.,
34(4):85:1-85:9, July 2015.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll,
and Michael J. Black. Smpl: A skinned multi-person linear model. ACM
Trans. Graph., 34(6):248:1-248:16, October 2015.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin
Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen.
Build-to-last: Strength to weight 3d printed objects. ACM Trans. Graph.,
33(4):97:1-97:10, July 2014.

Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. Elements of style:
Learning perceptual shape style similarity. ACM Trans. Graph., 34(4):84:1—
84:14, July 2015.

Yiwen Luo and Xiaoou Tang. Photo and video quality evaluation: Fo-
cusing on the subject. In Proceedings of the 10th European Conference on
Computer Vision: Part III, ECCV ’08, pages 386—399, 2008.

Luca Marchesotti, Florent Perronnin, Diane Larlus, and Gabriela Csurka.
Assessing the aesthetic quality of photographs using generic image descrip-
tors. In Proceedings of the 2011 International Conference on Computer
Vision, ICCV ’11, pages 1784-1791, 2011.

J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design galleries: A general approach to setting parameters for
computer graphics and animation. In Proceedings of the 24th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97,
pages 389-400, 1997.

Tobias Martin, Nobuyuki Umetani, and Bernd Bickel. Omniad: Data-
driven omni-directional aerodynamics. ACM Trans. Graph., 34(4):113:1-
113:12, July 2015.

Jonas Martinez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. Struc-
ture and appearance optimization for controllable shape design. ACM
Trans. Graph., 34(6):229:1-229:11, October 2015.

Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan.
A data-driven reflectance model. ACM Trans. Graph., 22(3):759-769, July
2003.

Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian
Smits, Brent Burley, and Adam Martinez. Practical physically-based shad-
ing in film and game production. In ACM SIGGRAPH 2012 Courses,
SIGGRAPH ’12, pages 10:1-10:7, 2012.

102



REFERENCES

[102]

[103]

[104]

[105]

[106]

[107)

108

[109]

[110]

[111]

[112]

[113]

[114]

Jonas Mockus. On bayesian methods for seeking the extremum. In Proceed-
ings of IFIP Technical Conference on Optimization Techniques ’74, pages
400-404, 1974.

Morihiro Nakamura, Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi.
An interactive design system of free-formed bamboo-copters. Computer
Graphics Forum, 35(7):323-332, 2016.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian
mesh optimization. In Proceedings of the 4th International Conference on
Computer Graphics and Interactive Techniques in Australasia and South-
east Asia, GRAPHITE 06, pages 381-389, 2006.

Addy Ngan, Frédo Durand, and Wojciech Matusik. Image-driven naviga-
tion of analytical BRDF models. In Proceedings of the 17th Eurographics
Conference on Rendering Techniques, EGSR 06, pages 399-407, 2006.

Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. On
optimal, minimal brdf sampling for reflectance acquisition. ACM Trans.
Graph., 34(6):186:1-186:11, October 2015.

Masashi Nishiyama, Takahiro Okabe, Imari Sato, and Yoichi Sato. Aes-
thetic quality classification of photographs based on color harmony. In
Proceedings of the 24th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 11, pages 33-40, June 2011.

Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. Color com-
patibility from large datasets. ACM Trans. Graph., 30(4):63:1-63:12, July
2011.

Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. Learning lay-
outs for single-page graphic designs. IEFE Transactions on Visualization
and Computer Graphics, 20(8):1200-1213, August 2014.

Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. DesignScape:
Design with interactive layout suggestions. In Proceedings of the 33rd An-
nual ACM Conference on Human Factors in Computing Systems, CHI "15,
pages 1221-1224, 2015.

Peter O’Donovan, Janis Libeks, Aseem Agarwala, and Aaron Hertzmann.
Exploratory font selection using crowdsourced attributes. ACM Trans.
Graph., 33(4):92:1-92:9, July 2014.

Makoto Okabe, Yasuyuki Matsushita, Li Shen, and Takeo Igarashi. Illumi-
nation brush: Interactive design of all-frequency lighting. In Proceedings of
the 15th Pacific Conference on Computer Graphics and Applications, PG
07, pages 171-180, 2007.

Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287—
296, July 1985.

Ken Perlin. Improving noise. ACM Trans. Graph., 21(3):681-682, July
2002.

103



REFERENCES

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-
Hornung. Make it stand: Balancing shapes for 3d fabrication. ACM Trans.
Graph., 32(4):81:1-81:10, July 2013.

Alexander J. Quinn and Benjamin B. Bederson. Human computation: A
survey and taxonomy of a growing field. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11, pages 1403~
1412, 2011.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning. The MIT Press, 2006.

Katharina Reinecke and Krzysztof Z. Gajos. Quantifying visual preferences
around the world. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 14, pages 11-20, 2014.

Daniela Retelny, Sébastien Robaszkiewicz, Alexandra To, Walter S.
Lasecki, Jay Patel, Negar Rahmati, Tulsee Doshi, Melissa Valentine, and
Michael S. Bernstein. Expert crowdsourcing with flash teams. In Proceed-
ings of the 27th Annual ACM Symposium on User Interface Software and
Technology, UIST 14, pages 75-85, 2014.

Mark Sagar. Facial performance capture and expressive translation for king
kong. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, 2006.

Niloufar Salehi, Lilly C. Irani, Michael S. Bernstein, Ali Alkhatib, Eva
Ogbe, Kristy Milland, and Clickhappier. We are dynamo: Overcoming
stalling and friction in collective action for crowd workers. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Sys-
tems, CHI ’15, pages 1621-1630, 2015.

Juliane Schéfer and Korbinian Strimmer. A shrinkage approach to large-
scale covariance matrix estimation and implications for functional genomics.
Statistical Applications in Genetics and Molecular Biology, 4(1), November
2005.

Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus
local search in constrained optimization of computer models, volume 34 of
Lecture Notes—Monograph Series, pages 11-25. Institute of Mathematical
Statistics, Hayward, CA, 1998.

Adrian Secord, Jingwan Lu, Adam Finkelstein, Manish Singh, and Andrew
Nealen. Perceptual models of viewpoint preference. ACM Trans. Graph.,
30(5):109:1-109:12, October 2011.

Ana Serrano, Diego Gutierrez, Karol Myszkowski, Hans-Peter Seidel, and
Belen Masia. An intuitive control space for material appearance. ACM
Trans. Graph., 35(6):186:1-186:12, November 2016.

Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin—-Madison, Madison, WI, USA, 2009.

104



REFERENCES

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando
de Freitas. Taking the human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEFE, 104(1):148-175, January 2016.

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Image appearance explo-
ration by model-based navigation. Computer Graphics Forum, 28(2):629—
638, 2009.

Gaurav Sharma, Wencheng Wu, and Edul N. Dalal. The CIEDE2000 color-
difference formula: Implementation notes, supplementary test data, and
mathematical observations. Color Research & Application, 30(1):21-30,
2005.

Maria Shugrina, Ariel Shamir, and Wojciech Matusik. Fab forms: Cus-
tomizable objects for fabrication with validity and geometry caching. ACM
Trans. Graph., 34(4):100:1-100:12, July 2015.

Leonid Sigal, Moshe Mahler, Spencer Diaz, Kyna Mclntosh, Elizabeth
Carter, Timothy Richards, and Jessica Hodgins. A perceptual control space
for garment simulation. ACM Trans. Graph., 34(4):117:1-117:10, July 2015.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in Neural Infor-
mation Processing Systems 25, NIPS ’12, pages 2951-2959, 2012.

Olga Sorkine. Differential representations for mesh processing. Computer
Graphics Forum, 25(4):789-807, 2006.

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomir
Meéch. Stress relief: Improving structural strength of 3D printable objects.
ACM Trans. Graph., 31(4):48:1-48:11, July 2012.

Stephan Streuber, M. Alejandra Quiros-Ramirez, Matthew Q. Hill, Ca-
rina A. Hahn, Silvia Zuffi, Alice O’Toole, and Michael J. Black. Body
talk: Crowdshaping realistic 3d avatars with words. ACM Trans. Graph.,
35(4):54:1-54:14, July 2016.

Ryo Suzuki, Niloufar Salehi, Michelle S. Lam, Juan C. Marroquin, and
Michael S. Bernstein. Atelier: Repurposing expert crowdsourcing tasks as
micro-internships. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, pages 2645-2656, 2016.

Daniel Sykora, David Sedlacek, Sun Jinchao, John Dingliana, and Steven
Collins. Adding depth to cartoons using sparse depth (in)equalities. Com-
puter Graphics Forum, 29(2):615-623, 2010.

Hideyuki Takagi. Interactive evolutionary computation: Fusion of the capa-
bilities of ec optimization and human evaluation. Proceedings of the IEEFE,
89(9):1275-1296, 2001.

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen
Koltun. Exploratory modeling with collaborative design spaces. ACM
Trans. Graph., 28(5):167:1-167:10, December 20009.

105



REFERENCES

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]
[151]

[152]

[153]

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomir Méch, and
Vladlen Koltun. Metropolis procedural modeling. ACM Trans. Graph.,
30(2):11:1-11:14, April 2011.

Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Kalai.
Adaptively learning the crowd kernel. In Lise Getoor and Tobias Schef-
fer, editors, Proceedings of the 28th International Conference on Machine
Learning, ICML ’11, pages 673—680, June 2011.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,

290(5500):2319-2323, 2000.

Michael Terry and Elizabeth D. Mynatt. Side views: Persistent, on-demand
previews for open-ended tasks. In Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology, UIST ’02, pages
71-80, 2002.

Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Ya-
mamoto. Variation in element and action: Supporting simultaneous devel-
opment of alternative solutions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’04, pages 711-718, 2004.

The GIMP Team. GIMP - GNU Image Manipulation Program. https:
//www.gimp.org/.

Kristi Tsukida and Maya R. Gupta. How to analyze paired comparison
data. Technical report, University of Washington, 2011.

Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. Guided explo-
ration of physically valid shapes for furniture design. ACM Trans. Graph.,
31(4):86:1-86:11, July 2012.

Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grin-
spun. Sensitive couture for interactive garment modeling and editing. ACM
Trans. Graph., 30(4):90:1-90:12, July 2011.

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi.
Pteromys: Interactive design and optimization of free-formed free-flight
model airplanes. ACM Trans. Graph., 33(4):65:1-65:10, July 2014.

Unity Technologies. Unity. https://unity3d.com/.

Laurens van der Maaten, Eric Postma, and Jaap van den Herik. Dimen-
sionality reduction: A comparative review. Technical Report TiCC TR
2009-005, TiCC, Tilburg University, 2009.

Luis von Ahn. Human Computation. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 2005. AAI3205378.

Luis von Ahn and Laura Dabbish. Labeling images with a computer game.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, pages 319-326, 2004.

106


https://www.gimp.org/
https://www.gimp.org/
https://unity3d.com/

REFERENCES

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Luis von Ahn and Laura Dabbish. Designing games with a purpose. Com-
mun. ACM, 51(8):58-67, August 2008.

Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. reCAPTCHA: Human-based character recognition via web
security measures. Science, 321(5895):1465-1468, 2008.

Lingfeng Wang and Emily Whiting. Buoyancy optimization for computa-
tional fabrication. Computer Graphics Forum, 35(2):49-58, 2016.

Jason Weber and Joseph Penn. Creation and rendering of realistic trees.
In Proceedings of the 22nd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 95, pages 119-128, 1995.

Wikipedia. Computational creativity - Wikipedia. https://
en.wikipedia.org/wiki/Computational_creativity.  Last checked:
November 11, 2016.

Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Scented widgets:
Improving navigation cues with embedded visualizations. IEEE Transac-
tions on Visualization and Computer Graphics, 13(6):1129-1136, November
2007.

Andrew Witkin and Michael Kass. Spacetime constraints. SIGGRAPH
Comput. Graph., 22(4):159-168, June 1988.

Jungdam Won, Kyungho Lee, Carol O’Sullivan, Jessica K. Hodgins, and
Jehee Lee. Generating and ranking diverse multi-character interactions.
ACM Trans. Graph., 33(6):219:1-219:12, November 2014.

Anbang Xu, Shih-Wen Huang, and Brian Bailey. Voyant: Generating struc-
tured feedback on visual designs using a crowd of non-experts. In Proceed-
ings of the 17th ACM Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’14, pages 1433-1444, 2014.

Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and di-
verse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph.,
31(4):57:1-57:10, July 2012.

Daiki Yamanaka, Hiromasa Suzuki, and Yutaka Ohtake. Density aware
shape modeling to control mass properties of 3d printed objects. In SIG-
GRAPH Asia 2014 Technical Briefs, SA ’14, pages 7:1-7:4, 2014.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu.
Automatic photo adjustment using deep neural networks. ACM Trans.
Graph., 35(2):11:1-11:15, February 2016.

Mehmet Ersin Yumer, Paul Asente, Radomir Mech, and Levent Burak
Kara. Procedural modeling using autoencoder networks. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’15, pages 109-118, 2015.

107


https://en.wikipedia.org/wiki/Computational_creativity
https://en.wikipedia.org/wiki/Computational_creativity

REFERENCES

[167] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K. Hodgins, and Lev-
ent Burak Kara. Semantic shape editing using deformation handles. ACM
Trans. Graph., 34(4):86:1-86:12, July 2015.

[168] Jun-Yan Zhu, Aseem Agarwala, Alexei A. Efros, Eli Shechtman, and Jue
Wang. Mirror mirror: Crowdsourcing better portraits. ACM Trans. Graph.,
33(6):234:1-234:12, November 2014.

108



	Introduction
	Motivation
	Problem Formulation
	Challenges
	Assumptions and Scope

	Our Approach
	Organization of the Thesis

	Related Work
	Computational Design
	Functional Criteria
	Aesthetic Criteria

	Computational Perceptual Models
	Parameter Tweaking Interface
	Human Computation and Crowdsourcing
	Human Computation
	Crowdsourcing
	Crowdsourced Human Computation

	Parametric Spaces in Visual Design
	Summary

	Crowd-Powered Parameter Preference Estimation
	Introduction
	Crowd-Powered Parameter Analysis
	Overview of the Process
	Sampling Parameter Sets
	Gathering Pairwise Comparisons by Crowdsourcing
	Estimating Goodness Values of Sampling Points
	Fitting a Goodness Function

	User Interface
	Smart Suggestion
	VisOpt Slider

	Applications
	Photo Color Enhancement
	Camera and Light Control
	Shader (Material BRDF)
	Blendshape Facial Expression

	Evaluation
	Quality of Analysis
	User Study of the Interfaces

	Discussion
	Other Possible Representations of Goodness Function
	Limitation
	Design Implication


	History-Based Parameter Preference Estimation
	Introduction
	Related Work
	Manual Photo Color Enhancement
	Automatic Photo Color Enhancement
	Demonstration-Based Techniques

	Self-Reinforcing Photo Enhancement System
	User Support Functions

	Algorithms
	Overview of Self-Reinforcement Procedure
	Distance Metric Learning of Photos
	Photo Feature Space Computation
	Enhancement Preference Model
	Implementation of User Support Functions

	User Study
	Participants
	Procedure

	Results
	Preliminary and Post-Task Questionnaires
	Feedback in Interview
	Quantitative Results

	Discussion
	Summary of User Study
	Design Implications
	Limitations
	Future Work


	Crowd-Powered Parameter Preference Maximization
	Introduction
	Existing Methods
	Contributions

	Background: Bayesian Optimization
	Overview
	Gaussian Process Prior
	Covariance Hyperparameters
	Acquisition Function
	Example Optimization Sequences

	Bayesian Optimization Based on Line Search Oracle
	Slider Space
	Likelihood of Single-Slider Manipulation Responses
	Data Representation
	Inference from Single-Slider Manipulation Data
	Example Optimization Sequence

	Crowd-Powered Visual Design Optimizer
	Example Scenarios and Results
	Photo Color Enhancement
	Material BRDF Editing

	Evaluation
	Experiment 1: Synthetic Setting
	Experiment 2: Crowdsourcing Setting

	Limitations and Future Work

	Conclusion
	Summary
	Discussions
	Estimation of g() vs. Maximization of g()
	Crowdsourced Human Computation vs. Editing History

	Remaining Challenges
	Design Space Parametrization
	Discrete Parameters
	Locally Optimal Design Alternatives
	Evaluation Methodology
	More Complex Models of Crowd Behaviors
	Incorporating Domain-Specific Heuristics
	Combining Crowd and Personal Preference

	Future Directions
	Free-Form Design from Scratch
	More Complex Design Criteria
	Computational Creative Design


	References

